Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 26 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 26 - in Differential Geometrical Theory of Statistics

Image of the Page - 26 -

Image of the Page - 26 - in Differential Geometrical Theory of Statistics

Text of the Page - 26 -

Entropy2016,18, 370 Withx= ρ1(z)andx0= ρb(z),zbeinganyelement inM, that inequalitybecomes h ( ρ1(z) ) = ρ1(z) log ( 1 ρ1(z) ) ≤ ρb(z)− ( 1+ logρb(z) ) ρ1(z) . ByintegrationoverM,usingthefact thatρb is theprobabilitydensityof theGibbsstateassociated tob,weobtain s(ρ1)≤1−1− ∫ M ρ1 logρbdλω= s(ρb) . Wehaveproventhe inequality s(ρ1)≤ s(ρb). Ifρ1= ρb,wehaveofcourse theequality s(ρ1)= s(ρb). Conversely if s(ρ1)= s(ρb), the functionsdefinedonM z →ϕ1(z)= ρ1(z) log ( 1 ρ1(z) ) and z →ϕ(z)= ρb(z)− ( 1+ logρb(z) ) ρ1(z) arecontinuousonMexcept,maybe, forϕ, atpointszatwhichρb(z)=0andρ1(z) =0,but thesetof suchpoints isofmeasure0sinceϕ is integrable. Theysatisfytheinequalityϕ1≤ϕ. Bothare integrable onMandhavethesameintegral. Thefunctionϕ−ϕ1 iseverywhere≥0, is integrableonMandits integral is0. That function is thereforeeverywhereequal to0onM.Wecanwrite, for anyz∈M, ρ1(z) log ( 1 ρ1(z) ) = ρb(z)− ( 1+ logρb(z) ) ρ1(z) . (6) Foreachz∈M suchthatρ1(z) =0,wecandivide thatequalitybyρ1(z).Weobtain ρb(z) ρ1(z) − log ( ρb(z) ρ1(z) ) =1. Since the function x → x− logx reaches itsminimum,equal to1, forauniquevalueof x> 0, thatvaluebeing1,wesee that foreach z∈Matwhichρ1(z)>0,wehaveρ1(z)= ρb(z). Atpoints z∈Matwhichρ1(z)=0,Equation(6) showsthatρb(z)=0. Thereforeρ1= ρb. Remark14. Themaximality property of the entropy functionρ → s(ρ) at aGibbs state densityρb proven inProposition9of course implies the stationarity of that functionatρb with respect to smooth infinitesimal variationsofρwithfixedmeanvalueofH,proven inProposition8. ThatProposition therefore couldbeomitted. Wechose tokeep it because itsproof ismucheasier than that ofProposition9, andexplainswhy it is interesting to lookatprobabilitydensitiesproportional to exp(−bH) for someb∈R. ThefollowingpropositionshowsthataGibbsstatistical state remains invariantunder theflowof theHamiltonianvectorfieldXH.OnecanthereforesaythataGibbsstate isastatisticalequilibrium state.Ofcourse thereexist statisticalequilibriumstatesother thanGibbsstates. Proposition10. LetHbeasmoothHamiltonianboundedbybelowonasymplecticmanifold (M,ω), b∈R be such that the integral defining the value P(b) of the partition functionPat b converges. TheGibbs state associated tob remains invariantunder theflowofof theHamiltonianvectorfieldXH. Proof. Thedensityρbof theGibbsstateassociatedtob,withrespect to theLiouvillemeasureλω, is ρb= 1 P(b) exp(−bH) . SinceH is constantalongeach integral curveofXH,ρb too isconstantalongeach integral curve ofXH. Moreover, theLiouvillemeasureλω remains invariantunder theflowofXH. Therefore the Gibbsprobabilitymeasureassociatedtob tooremains invariantunder thatflow. 26
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics