Page - 42 - in Differential Geometrical Theory of Statistics
Image of the Page - 42 -
Text of the Page - 42 -
Entropy2016,18, 370
Letus consider amechanical systemmadebyapointparticle ofmassmwhosepositionand
velocityat time t, in thereference frameallowingthe identificationofspace-timewithR3×R, are the
vectors−→r and−→v ∈ R3. The action of an element of theGalilean group on−→r ,−→v and t can be
writtenas⎛⎜⎝ −→r −→v
t 1
1 0 ⎞⎟⎠ → ⎛⎜⎝A −→
b −→
d
0 1 e
0 0 1 ⎞⎟⎠ ⎛⎜⎝ −→r −→v
t 1
1 0 ⎞⎟⎠= ⎛⎜⎝A−→r + t −→
b + −→
d A−→v +−→b
t+e 1
1 0 ⎞⎟⎠ .
Souriauhasshowninhisbook[14] that thisaction isHamiltonian,with themap J,definedonthe
evolutionspaceof theparticle,withvalue in thedualG∗of theLiealgebraGof theGalileangroup,
asmomentummap
J(−→r ,t,−→v ,m)=m (
−→r ×−→v ,−→r − t−→v ,−→v , 1
2 ‖−→v ‖2 )
.
Letb= ⎛⎜⎝j(−→ω) −→
β −→
δ
0 0 ε
0 0 0 ⎞⎟⎠beanelement inG. Its couplingwith J(−→r ,t,−→v ,m)∈G∗ isgivenby
the formula〈 J(−→r ,t,−→v ,m),b〉=m(−→ω ·(−→r ×−→v )−(−→r − t−→v ) ·−→β +−→v ·−→δ − 1
2 ‖−→v ‖2ε )
.
7.3.3.One-ParameterSubgroupsof theGalileanGroup
Inhisbook[14],SouriauhasshownthatwhentheconsideredLiegroupaction is theactionof the
fullGalileangrouponthespaceofmotionsofan isolatedmechanical system, theopensubsetΩof
theLiealgebraGof theGalileangrouponwhichtheconditionsspecifiedinSection7.2aresatisfied
isempty. Inotherwords,generalizedGibbsstatesof the fullGalileangroupdonotexist.However,
generalizedGibbsstates forone-parametersubgroupsof theGalileangroupdoexistwhichhavean
interestingphysicalmeaning.
Letus consideranelement bofG such that in itsmatrix expression (expression (9) above)we
have ε =0. Theone-parametersubgroupG1 of theGalileangroupgeneratedbyb is thesetofmatrices
exp(τb),withτ∈R.Wehave
exp(τb)= ⎛⎜⎝A(τ) −→
b (τ) −→
d (τ)
0 1 τε
0 0 1 ⎞⎟⎠ ,
with
A(τ)= exp ( τj(−→ω)) ,
−→
b (τ)= (
∞
∑
n=1 τn
n! ( j(−→ω))n−1)−→β ,
−→
d (τ)= (
∞
∑
n=1 τn
n! ( j(−→ω))n−1)−→δ +ε( ∞∑
n=2 τn
n! ( j(−→ω))n−2)−→β ,
with theusualconventionthat ( j(−→ω))0 is theunitmatrix.
Thephysicalmeaningof thisone-parametersubgroupof theGalileangroupcanbeunderstoodas
follows. Letuscallfixed theaffineEuclideanreference frameofspace (O,−→ex ,−→ey ,−→ez)usedtorepresent,
at time t=0,apoint inspacebyavector−→r orby its threecomponentsx,yand z. Letussetτ= t
ε .
42
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik