Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 42 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 42 - in Differential Geometrical Theory of Statistics

Image of the Page - 42 -

Image of the Page - 42 - in Differential Geometrical Theory of Statistics

Text of the Page - 42 -

Entropy2016,18, 370 Letus consider amechanical systemmadebyapointparticle ofmassmwhosepositionand velocityat time t, in thereference frameallowingthe identificationofspace-timewithR3×R, are the vectors−→r and−→v ∈ R3. The action of an element of theGalilean group on−→r ,−→v and t can be writtenas⎛⎜⎝ −→r −→v t 1 1 0 ⎞⎟⎠ → ⎛⎜⎝A −→ b −→ d 0 1 e 0 0 1 ⎞⎟⎠ ⎛⎜⎝ −→r −→v t 1 1 0 ⎞⎟⎠= ⎛⎜⎝A−→r + t −→ b + −→ d A−→v +−→b t+e 1 1 0 ⎞⎟⎠ . Souriauhasshowninhisbook[14] that thisaction isHamiltonian,with themap J,definedonthe evolutionspaceof theparticle,withvalue in thedualG∗of theLiealgebraGof theGalileangroup, asmomentummap J(−→r ,t,−→v ,m)=m ( −→r ×−→v ,−→r − t−→v ,−→v , 1 2 ‖−→v ‖2 ) . Letb= ⎛⎜⎝j(−→ω) −→ β −→ δ 0 0 ε 0 0 0 ⎞⎟⎠beanelement inG. Its couplingwith J(−→r ,t,−→v ,m)∈G∗ isgivenby the formula〈 J(−→r ,t,−→v ,m),b〉=m(−→ω ·(−→r ×−→v )−(−→r − t−→v ) ·−→β +−→v ·−→δ − 1 2 ‖−→v ‖2ε ) . 7.3.3.One-ParameterSubgroupsof theGalileanGroup Inhisbook[14],SouriauhasshownthatwhentheconsideredLiegroupaction is theactionof the fullGalileangrouponthespaceofmotionsofan isolatedmechanical system, theopensubsetΩof theLiealgebraGof theGalileangrouponwhichtheconditionsspecifiedinSection7.2aresatisfied isempty. Inotherwords,generalizedGibbsstatesof the fullGalileangroupdonotexist.However, generalizedGibbsstates forone-parametersubgroupsof theGalileangroupdoexistwhichhavean interestingphysicalmeaning. Letus consideranelement bofG such that in itsmatrix expression (expression (9) above)we have ε =0. Theone-parametersubgroupG1 of theGalileangroupgeneratedbyb is thesetofmatrices exp(τb),withτ∈R.Wehave exp(τb)= ⎛⎜⎝A(τ) −→ b (τ) −→ d (τ) 0 1 τε 0 0 1 ⎞⎟⎠ , with A(τ)= exp ( τj(−→ω)) , −→ b (τ)= ( ∞ ∑ n=1 τn n! ( j(−→ω))n−1)−→β , −→ d (τ)= ( ∞ ∑ n=1 τn n! ( j(−→ω))n−1)−→δ +ε( ∞∑ n=2 τn n! ( j(−→ω))n−2)−→β , with theusualconventionthat ( j(−→ω))0 is theunitmatrix. Thephysicalmeaningof thisone-parametersubgroupof theGalileangroupcanbeunderstoodas follows. Letuscallfixed theaffineEuclideanreference frameofspace (O,−→ex ,−→ey ,−→ez)usedtorepresent, at time t=0,apoint inspacebyavector−→r orby its threecomponentsx,yand z. Letussetτ= t ε . 42
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics