Page - 48 - in Differential Geometrical Theory of Statistics
Image of the Page - 48 -
Text of the Page - 48 -
Entropy2016,18, 370
47. Shannon,C.E.Amathematical theoryofcommunication.BellSyst. Tech. J.1948,27, 379–423,623–656.
48. Jaynes,E.T. Informationtheoryandstatisticalmechanics.Phys. Rev. 1957,106, 620–630.
49. Jaynes,E.T. Informationtheoryandstatisticalmechanics II.Phys. Rev. 1957,108, 171–190.
50. Balian,R. Information instatisticalphysics.Stud.Hist. Philos.Mod. Phys. PartB2005,36, 323–353.
51. Poincaré, H. Sur le problème des trois corps et les équations de la dynamique. Acta Math. 1890,
doi:10.1007/BF02392506. (InFrench)
52. Kinetic Theory. Available online: http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/kinthe.html
(accessedon11October2016).
53. Gastebois,G.ThéorieCinétiquedesGaz.Availableonline: http://gilbert.gastebois.pagesperso-orange.fr/
java/gaz/gazparfait/theorie_gaz.pdf (accessedon11October2016). (InFrench)
54. Synge, J.L.TheRelativisticGas;NorthHollandPublishingCompany:Amsterdam,TheNetherlands,1957.
55. Massieu, F. Sur les Fonctions caractéristiquesdesdiversfluides. C.R.Acad. Sci. Paris 1869, 69, 858–862.
(InFrench)
56. Massieu,F.AdditionauprécédentMémoiresur lesFonctionscaractéristiques.C.R.Acad.Sci.Paris1869,69,
1057–1061. (InFrench)
57. Massieu,F.Thermodynamique.Mémoire sur lesFonctionsCaractéristiquesdesDiversFluides et sur laThéoriedes
Vapeurs;AcadémiedesSciences: Paris,France,1876;pp.1–92. (InFrench).
58. Balian, R. FrançoisMassieu et les Potentiels Thermodynamiques; Évolution desDisciplines etHistoire des
Découvertes;AcadémiedesSciences: Paris,France,2015. (InFrench)
59. Callen,H.B.ThermodynamicsandanIntroduction toThermostatics, 2nded.; JohnWileyandSons:NewYork,
NY,USA,1985.
60. Barbaresco, F. Koszul information geometry and Souriau geometric temperature/capacity of lie group
thermodynamics.Entropy2014,16, 4521–4565.
61. Barbaresco, F. Geometric theory of heat from Souriau lie groups thermodynamics and koszul
hessian geometry: Applications in information geometry for exponential families. Entropy 2016,
doi:10.20944/preprints201608.0078.v1.
62. DeSaxcé,G.;Vallée,C.Bargmanngroup,momentumtensorandGalilean invarianceofClausius-Duhem
inequality. Int. J.Eng. Sci. 2012,50, 216–232.
63. Jacobi, C.G.J. Sur le mouvement d’un point et sur un cas particulier du problème des trois corps.
C.R.Acad.Sci. 1836,3, 59–61. (InFrench)
64. DeSaxcé,G.Entropyandstructureforthethermodynamicsystems. InGeometricScienceof Information,Second
InternationalConferenceGSI2015Proceedings;Nielsen,F.,Barbaresco,F.,Eds.;LectureNotes inComputer
Science;Springer: Berlin/Heidelberg,Germany,2015;Volume9389,pp. 519–528.
65. DeSaxcé,G.Linkbetweenliegroupstatisticalmechanicsandthermodynamicsofcontinua.Entropy2016,
doi:10.3390/e18070254.
c©2016bytheauthor. LicenseeMDPI,Basel,Switzerland.Thisarticle isanopenaccess
articledistributedunder the termsandconditionsof theCreativeCommonsAttribution
(CCBY) license (http://creativecommons.org/licenses/by/4.0/).
48
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik