Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 50 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 50 - in Differential Geometrical Theory of Statistics

Image of the Page - 50 -

Image of the Page - 50 - in Differential Geometrical Theory of Statistics

Text of the Page - 50 -

Entropy2016,18, 386 1. Introduction ThisMDPIEntropySpecial Issueon“DifferentialGeometrical Theoryof Statistics” collects a limitednumberofselected invitedandcontributedtalkspresentedduringtheGSI’15conferenceon “GeometricScienceof Information” inOctober2015. Thispaper isanextendedversionof thepaper [3] “Symplectic Structure of InformationGeometry: FisherMetric andEuler-PoincarĂ©Equation of SouriauLie GroupThermodynamics”publishedinGSI’15Proceedings.AtGSI’15conference,aspecial sessionwas organizedon“liegroupsandgeometricmechanics/thermodynamics”,dedicatedtoJean-MarieSouriau’s works instatisticalphysics,organizedbyGerydeSaxcĂ©andFrĂ©dĂ©ricBarbaresco,andaninvitedtalk on“ActionsofLiegroupsandLiealgebrasonsymplectic andPoissonmanifolds.Application toLagrangian andHamiltoniansystems”byCharles-MichelMarle,addressing“Souriau’s thermodynamicsofLiegroups”. Inhonorof Jean-MarieSouriau,whodied in2012andClaudeVallĂ©e [4–6],whopassedawayin2015, thisSpecial IssuewillpublishthreepapersonSouriau’s thermodynamics:Marle’spaperon“FromTools inSymplectic andPoissonGeometry toSouriau’sTheories ofStatisticalMechanicsandThermodynamics” [7], deSaxcé’spaperon“LinkbetweenLieGroupStatisticalMechanicsandThermodynamicsofContinua”[8]and thispublicationbyBarbaresco. Thispaperalsoproposesnewdevelopments, comparedtopaper [9] whererelationsbetweenSouriauandKoszulmodelshavebeen initiated. Thispaper, similar tothegoalof thepapersofMarleanddeSaxcĂ© inthisSpecial Issue, is intended tohonorthememoryoftheFrenchPhysicist Jean-MarieSouriauandtopopularizehisworks,currently littleknown,onstatisticalphysicsandthermodynamics. Souriau iswellknownforhisseminaland major contributions ingeometricmechanics, thedisciplinehe created in the 1960s, fromprevious Lagrange’sworksthatheconceptualizedintheframeworkofsymplecticgeometry,butveryfewpeople knoworhaveexploitedSouriau’sworkscontainedinChapter IVofhisbook“Structuredes systĂšmes dynamiques”publishedin1970[10]andonly translated intoEnglish in1995 in thebook“Structureof DynamicalSystems:ASymplecticViewofPhysics” [11], inwhichheappliedthe formalismofgeometric mechanics tostatisticalphysics. Thepersonalauthor’s contribution is toplace theworkofSouriau in thebroader context of the emerging“Geometric Science of Information” [12] (addressed inGSI’15 conference), forwhich theauthorwill showthat theSouriaumodelof statisticalphysics isparticularly welladaptedtogeneralize“informationgeometry”, that theauthor illustrates forexponentialdensities family andmultivariate gaussian densities. The authorwill observe that the Riemannianmetric introducedbySouriau isageneralizationofFishermetric,used in“informationgeometry”, asbeing identiïŹedto thehessianof the logarithmof thegeneralizedpartition function(Massieucharacteristic function), for the case of densities on homogeneous manifolds where a non-abelian group acts transively. For a groupof time translation,we recover the classical thermodynamics and for the Euclidean space,we recover the classical Fishermetric used in Statistics. The author elaborates a newEuler-PoincarĂ© equation for Souriau’s thermodynamics, action on “geometric heat” variable Q (element of dual Lie algebra), and parameterized by “geometric temperature” (element of Lie algebra). Theauthorwill integrateSouriau thermodynamics inavariationalmodelbydeïŹningan extendedCartan-PoincarĂ© integral invariantdeïŹnedbySouriau“geometriccharacteristic function” (the logarithmof thegeneralizedSouriaupartition functionparameterizedbygeometric temperature). These results are illustrated for multivariate Gaussian densities, where the associated group is identiïŹedtocomputeaSouriaumomentmapandreducetheEuler-PoincarĂ©equationofgeodesics. In addition, the symplectic cocycle and Souriau-Fisher metric are deduced from a Lie group thermodynamicsmodel. Themaincontributionsof theauthor in thispaperare the following: ‱ TheSouriaumodelofLiegroup thermodynamics ispresentedwith standardnotationsofLie grouptheory, inplaceofSouriauequationsusing less classical conventions (thathave limited understandingofhisworkbyhiscontemporaries). ‱ Weprove thatSouriauRiemannianmetric introducedwithsymplectic cocycle isageneralization of Fisher metric (called Souriau-Fisher metric in the following) that preserves the property 50
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics