Page - 50 - in Differential Geometrical Theory of Statistics
Image of the Page - 50 -
Text of the Page - 50 -
Entropy2016,18, 386
1. Introduction
ThisMDPIEntropySpecial IssueonâDifferentialGeometrical Theoryof Statisticsâ collects a
limitednumberofselected invitedandcontributedtalkspresentedduringtheGSIâ15conferenceon
âGeometricScienceof Informationâ inOctober2015. Thispaper isanextendedversionof thepaper [3]
âSymplectic Structure of InformationGeometry: FisherMetric andEuler-PoincarĂ©Equation of SouriauLie
GroupThermodynamicsâpublishedinGSIâ15Proceedings.AtGSIâ15conference,aspecial sessionwas
organizedonâliegroupsandgeometricmechanics/thermodynamicsâ,dedicatedtoJean-MarieSouriauâs
works instatisticalphysics,organizedbyGerydeSaxcéandFrédéricBarbaresco,andaninvitedtalk
onâActionsofLiegroupsandLiealgebrasonsymplectic andPoissonmanifolds.Application toLagrangian
andHamiltoniansystemsâbyCharles-MichelMarle,addressingâSouriauâs thermodynamicsofLiegroupsâ.
Inhonorof Jean-MarieSouriau,whodied in2012andClaudeVallĂ©e [4â6],whopassedawayin2015,
thisSpecial IssuewillpublishthreepapersonSouriauâs thermodynamics:MarleâspaperonâFromTools
inSymplectic andPoissonGeometry toSouriauâsTheories ofStatisticalMechanicsandThermodynamicsâ [7],
deSaxcĂ©âspaperonâLinkbetweenLieGroupStatisticalMechanicsandThermodynamicsofContinuaâ[8]and
thispublicationbyBarbaresco. Thispaperalsoproposesnewdevelopments, comparedtopaper [9]
whererelationsbetweenSouriauandKoszulmodelshavebeen initiated.
Thispaper, similar tothegoalof thepapersofMarleanddeSaxcé inthisSpecial Issue, is intended
tohonorthememoryoftheFrenchPhysicist Jean-MarieSouriauandtopopularizehisworks,currently
littleknown,onstatisticalphysicsandthermodynamics. Souriau iswellknownforhisseminaland
major contributions ingeometricmechanics, thedisciplinehe created in the 1960s, fromprevious
Lagrangeâsworksthatheconceptualizedintheframeworkofsymplecticgeometry,butveryfewpeople
knoworhaveexploitedSouriauâsworkscontainedinChapter IVofhisbookâStructuredes systĂšmes
dynamiquesâpublishedin1970[10]andonly translated intoEnglish in1995 in thebookâStructureof
DynamicalSystems:ASymplecticViewofPhysicsâ [11], inwhichheappliedthe formalismofgeometric
mechanics tostatisticalphysics. Thepersonalauthorâs contribution is toplace theworkofSouriau
in thebroader context of the emergingâGeometric Science of Informationâ [12] (addressed inGSIâ15
conference), forwhich theauthorwill showthat theSouriaumodelof statisticalphysics isparticularly
welladaptedtogeneralizeâinformationgeometryâ, that theauthor illustrates forexponentialdensities
family andmultivariate gaussian densities. The authorwill observe that the Riemannianmetric
introducedbySouriau isageneralizationofFishermetric,used inâinformationgeometryâ, asbeing
identiïŹedto thehessianof the logarithmof thegeneralizedpartition function(Massieucharacteristic
function), for the case of densities on homogeneous manifolds where a non-abelian group acts
transively. For a groupof time translation,we recover the classical thermodynamics and for the
Euclidean space,we recover the classical Fishermetric used in Statistics. The author elaborates a
newEuler-PoincarĂ© equation for Souriauâs thermodynamics, action on âgeometric heatâ variable
Q (element of dual Lie algebra), and parameterized by âgeometric temperatureâ (element of Lie
algebra). Theauthorwill integrateSouriau thermodynamics inavariationalmodelbydeïŹningan
extendedCartan-PoincarĂ© integral invariantdeïŹnedbySouriauâgeometriccharacteristic functionâ
(the logarithmof thegeneralizedSouriaupartition functionparameterizedbygeometric temperature).
These results are illustrated for multivariate Gaussian densities, where the associated group is
identiïŹedtocomputeaSouriaumomentmapandreducetheEuler-PoincarĂ©equationofgeodesics.
In addition, the symplectic cocycle and Souriau-Fisher metric are deduced from a Lie group
thermodynamicsmodel.
Themaincontributionsof theauthor in thispaperare the following:
âą TheSouriaumodelofLiegroup thermodynamics ispresentedwith standardnotationsofLie
grouptheory, inplaceofSouriauequationsusing less classical conventions (thathave limited
understandingofhisworkbyhiscontemporaries).
âą Weprove thatSouriauRiemannianmetric introducedwithsymplectic cocycle isageneralization
of Fisher metric (called Souriau-Fisher metric in the following) that preserves the property
50
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik