Page - 51 - in Differential Geometrical Theory of Statistics
Image of the Page - 51 -
Text of the Page - 51 -
Entropy2016,18, 386
tobedefinedasahessianofpartition function logarithm gβ =−∂2Φ∂β2 = ∂2logψΩ
∂β2 as in classical
informationgeometry.Wethenestablishtheequalityof twoterms, thefirstonegivenbySouriau’s
definitionfromLiegroupcocycleΘandparameterizedby“geometricheat”Q (elementofdual
Lie algebra) and“geometric temperature” β (element ofLie algebra) and the secondone, the
hessianof thecharacteristic functionΦ(β)=−logψΩ(β)withrespect to thevariableβ:
gβ([β,Z1] , [β,Z2])= 〈Θ(Z1) , [β,Z2]〉+〈Q, [Z1, [β,Z2]]〉= ∂ 2logψΩ
∂β2 (1)
AdualSouriau-Fishermetric, theinverseof this lastone,couldbealsoelaboratedwiththehessian
of “geometric entropy” s(Q)with respect to the variableQ: ∂ 2s(Q)
∂Q2 For themaximumentropy
density (Gibbsdensity), the followingthree termscoincide: ∂ 2logψΩ
∂β2 thatdescribes theconvexityof
the log-likelihoodfunction, I(β)=−E [
∂2logpβ(ξ)
∂β2 ]
theFishermetric thatdescribes thecovariance
of the log-likelihoodgradient,whereas I(β)=E [
(ξ−Q)(ξ−Q)T ]
=Var(ξ) thatdescribes the
covarianceof theobservables.
• ThisSouriau-Fishermetric isalso identifiedtobeproportional to thefirstderivativeof theheat
gβ=−∂Q∂β , andthencomparablebyanalogytogeometric“specificheat”or“calorificcapacity”.
• We observe that the Souriau metric is invariant with respect to the action of the group
I (
Adg(β) )
= I(β), due to the fact that the characteristic functionΦ(β) after the actionof the
group is linearly dependent to β. As the Fishermetric is proportional to the hessian of the
characteristic function,wehavethe following invariance:
I (
Adg(β) ) =−∂ 2(Φ−〈θ(g−1) ,β〉)
∂β2 =−∂ 2Φ
∂β2 = I(β) (2)
• Wehaveproposed,basedonSouriau’sLiegroupmodelandonanalogywithmechanicalvariables,
a variational principle of thermodynamics deduced fromPoincaré-Cartan integral invariant.
Thevariationalprincipleholdsong theLiealgebra, forvariationsδβ= .
η+[β,η],whereη(t) is
anarbitrarypath thatvanishesat theendpoints,η(a)=η(b)=0:
δ t1
t0 Φ(β(t)) ·dt=0 (3)
where the Poincaré-Cartan integral invariant
Ca Φ(β) ·dt =
Cb Φ(β) ·dt is definedwithΦ(β),
theMassieucharacteristic function,withthe1-formω=Φ(β)·dt=(〈Q,β〉−s)·dt=〈Q,(β·dt)〉−s·dt
• WehavededucedEuler-Poincaréequations for theSouriaumodel:
dQ
dt =ad
∗
βQand ⎧⎨⎩ s(Q)=〈β,Q〉−Φ(β)β=
∂s(Q)∂Q ∈g ,Q= ∂Φ(β)∂β ∈g∗ and ddt (
Ad∗gQ
)
=0
with { g∗ : dualLiealgebra
ad∗XY: Coadjointoperator (4)
whereQ is theSouriaugeometricheat (elementofdualLiealgebra)andβ is theSouriaugeometric
temperature (elementof theLiealgebra). Thesecondequation is linkedto theresultofSouriau
basedon themomentmap that a symplecticmanifold is alwaysacoadjointorbit, affineof its
groupofHamiltoniantransformations (asymplecticmanifoldhomogeneousunder theactionofa
Liegroup, is isomorphic,uptoacovering, toacoadjointorbit; symplectic leavesare theorbitsof
theaffineactionthatmakes themomentmapequivariant).
51
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik