Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 63 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 63 - in Differential Geometrical Theory of Statistics

Image of the Page - 63 -

Image of the Page - 63 - in Differential Geometrical Theory of Statistics

Text of the Page - 63 -

Entropy2016,18, 386 Foreachtemperatureβ, elementof theLiealgebrag, Souriauhas introducedatensor Θ˜β, equal to thesumof thecocycle Θ˜andtheheatcoboundary(with [.,.] Liebracket): Θ˜β(Z1,Z2)= Θ˜(Z1,Z2)+ 〈 Q,adZ1(Z2) 〉 with adZ1(Z2)= [Z1,Z2] (29) This tensor Θ˜β has the followingproperties: • Θ˜(X,Y)= 〈Θ(X),Y〉where themapΘ is theone-cocycleof theLiealgebragwithvalues ing∗, withΘ(X)=Teθ(X(e))where θ theone-cocycleof theLiegroupG. Θ˜(X,Y) is constantonM andthemap Θ˜(X,Y) : g×g→ isaskew-symmetricbilinear form,andiscalled the symplectic cocycle ofLie algebragassociatedto themomentmap J,with the followingproperties: Θ˜(X,Y)= J[X,Y]−{JX, JY}with {., .} PoissonBracketand J theMomentMap (30) Θ˜([X,Y] ,Z)+Θ˜([Y,Z] ,X)+Θ˜([Z,X] ,Y)=0 (31) where JX linear application from g to differential function on M: g→C∞(M,R) X→ JX and the associateddifferentiableapplication J, calledmoment(um)map: J :M→ g∗ suchthat JX(x)= 〈J(x),X〉 , X∈ g x → J(x) (32) If insteadof Jwetake the followingmomentmap: J′(x)= J(x)+Q , x∈M whereQ∈ g∗ is constant, thesymplecticcocycleθ is replacedbyθ′(g)= θ(g)+Q−Ad∗gQ where θ′−θ =Q−Ad∗gQ is one-coboundaryofGwithvalues in g∗. Wealsohaveproperties θ(g1g2)=Ad∗g1θ(g2)+θ(g1)andθ(e)=0. • Thegeometric temperature,elementof thealgebrag, is in the thekernelof the tensor Θ˜β: β∈Ker Θ˜β, suchthat Θ˜β(β,β)=0 , ∀β∈ g (33) • Thefollowingsymmetric tensorgβ,definedonallvaluesof adβ(.)= [β, .] ispositivedefinite: gβ([β,Z1] , [β,Z2])= Θ˜β(Z1, [β,Z2]) (34) gβ([β,Z1] ,Z2)= Θ˜β(Z1,Z2) , ∀Z1∈ g,∀Z2∈ Im ( adβ(.) ) (35) gβ(Z1,Z2)≥0 , ∀Z1,Z2∈ Im ( adβ(.) ) (36) where the linearmap adX ∈ gl(g) is the adjoint representation of the Lie algebra gdefined by X,Y∈ g(=TeG) → adX(Y)= [X,Y], and the co-adjoint representation of the Lie algebra g the linearmap ad∗X ∈ gl(g∗)which satisfies, for each ξ ∈ g∗ and X,Y ∈ g:〈ad∗X(ξ),Y〉 = 〈ξ,−adX(Y)〉These equations are universal, because they are not dependent on the symplectic manifoldbutonlyonthedynamicalgroupG, thesymplecticcocycleΘ, the temperatureβand theheatQ. Souriaucalledthismodel“Liegroups thermodynamics”. Wewillgive themaintheoremofSouriaufor this“Liegroupthermodynamics”: Theorem1(SouriauTheoremofLieGroupThermodynamics).LetΩbe the largest openproper subset of g,Lie algebraofG, such that M e−〈β,U(ξ)〉dλand M ξ ·e−〈β,U(ξ)〉dλare convergent integrals, this setΩ is convexand is invariantunder every transformationAdg(.),where g →Adg(.) is theadjoint representationof G, such thatAdg=Teigwith ig : h → ghg−1 . Let a :G×g∗→ g∗ auniqueaffineaction a such that linear 63
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
FrĂŠdĂŠric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics