Page - 68 - in Differential Geometrical Theory of Statistics
Image of the Page - 68 -
Text of the Page - 68 -
Entropy2016,18, 386
TM. Toeachparameterizedcontinuous,piecewisesmoothcurve Îł : [t0,t1]âM,deïŹnedonaclosed
interval [t0,t1],withvalues inM, oneassociates thevalueatÎłof theaction integral:
I(Îł)= t1
t0 L (
dÎł(t)
dt )
dt (51)
Thepartial differential of the function L :MĂgâ with respect to its secondvariable d2L,
which plays an important part in the Euler-Poincaré equation, can be expressed in terms of the
momentandLegendremaps: d2L= pgâ âŠÏtâŠLâŠÏ with J= pgâ âŠÏt(â d2L= JâŠLâŠÏ) themoment
map, pgâ :MĂgââ gâ thecanonicalprojectiononthesecondfactor, L :TMâTâM theLegendre
transform,with:
Ï :MĂgâTM/Ï(x,X)=XM(x)andÏt :TâMâMĂgâ/Ït(Ο)= (ÏM(Ο), J(Ο)) (52)
TheEuler-Poincaréequationcanthereforebewrittenunder the
form:(
d
dt âadâV(t) )
(JâŠLâŠÏ(Îł(t),V(t)))= JâŠd1L(Îł(t),V(t))with dÎł(t)dt =Ï(Îł(t),V(t)) (53)
with
H(Ο)= â©
Ο,Lâ1(Ο) âȘ
âL (
Lâ1(Ο) )
, ΟâTâM , L :TMâTâM , H :TâMâR . (54)
Following the remarkmadebyPoincaréat theendofhisnote [105], themost interestingcase
iswhen themap L :MĂgâR only depends on its secondvariableX â g. The Euler-PoincarĂ©
equationbecomes: (
d
dt âadâV(t) )(
dL(V(t)) )
=0 (55)
WecanuseanalogyofstructurewhentheconvexGibbsensemble ishomogeneous [106].Wecan
thenapplyEuler-PoincarĂ©equationforLiegroupthermodynamics.ConsideringClairautâsequation:
s(Q)= ăÎČ,QăâΊ(ÎČ)= â©
Îâ1(Q),Q âȘ
âΊ (
Îâ1(Q) )
(56)
withQ=Î(ÎČ)= âΊ
âÎČ â gâ,ÎČ=Îâ1(Q)â g, aSouriau-Euler-PoincarĂ© equationcanbeelaboratedfor
SouriauLiegroupthermodynamics:
dQ
dt = adâÎČQ (57)
or
d
dt (
AdâgQ )
=0. (58)
TheïŹrstequation, theEuler-PoincarĂ©equation isareductionofEuler-Lagrangeequationsusing
symmetriesandespecially the fact thatagroupisactinghomogeneouslyonthesymplecticmanifold:
dQ
dt = adâÎČQand â§âšâ© s(Q)=
ăÎČ,QăâΊ(ÎČ)ÎČ=
âs(Q)âQ â g , Q= âΊ(ÎČ)âÎČ â gâ (59)
68
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik