Page - 77 - in Differential Geometrical Theory of Statistics
Image of the Page - 77 -
Text of the Page - 77 -
Entropy2016,18, 386
Ifweconsiderη thegroupofhomomorphismofA(n,R) intoGL(n+1,R)givenby:
sâA(n,R) â [
f(s) q(s)
0 1 ]
âGL(n+1,R) (110)
withA(n,R) thegroupofall afïŹne transformationsofRn. Wehaveη(G(Ω))âG(V(Ω))and the
pair (η, )of thehomomorphism η :G(Ω)âG(V(Ω)) andthemap :ΩâV(Ω) isequivariant:
âŠs=η(s)⊠andd âŠs=η(s)âŠd (111)
6.7. ComparisonofKoszul andSouriauAfïŹneRepresentationofLieGroupandLieAlgebra
Wewill compare, in the followingTable1,afïŹnerepresentationofLiegroupandLiealgebra from
SouriauandKoszulapproaches:
Table1.TablecomparingSouriauandKoszulafïŹnerepresentationofLiegroupandLiealgebra.
SouriauModelofAfïŹneRepresentationofLie
GroupsandAlgebra KoszulModelofAfïŹneRepresentationofLie
GroupsandAlgebra
A(g)(x)=R(g)(x)+Ξ(g)withgâG,xâE
R :GâGL(E) and Ξ :GâE Af f(s) : a â sa= f(s)a+q(s) âsâG,âaâE
f :GâGL(E)
s â f(s)a= saâso âaâE
q :GâE
s âq(s)= so âsâG
Ξ(gh)=R(g)(Ξ(h))+Ξ(g)withg,hâG
Ξ :GâE isaone-cocycleofGwithvalues inE, q(st)= f(s)q(t)+q(s)
a(X)(x)= r(X)(x)+Î(X)withXâ g,xâE
The linearmapÎ : gâE isaone-cocycleofGwith
values inE:Î(X)=TeΞ(X(e)) ,Xâ g v â f(X)v+q(Y)
f andq thedifferentialof fandq respectively
Î([X,Y])= r(X)(Î(Y))âr(Y)(Î(X)) q([X,Y])= f(X)q(Y)â f(Y)q(X)âX,Yâ g
with f : gâ gl(E)andq : g âE
none af f(X)= [
f(X) q(X)
0 0 ]
none Af f(s)= [
f(s) q(s)
0 1 ]
6.8.AdditionalElementsonKoszulAfïŹneRepresentationofLieGroupandLieAlgebra
Let { x1,x2,...,xn }
bealocalcoordinatesystemonM, theChristoffelâssymbolsÎkijoftheconnection
DaredeïŹnedby:
D â
âxi â
âxj = n
â
k=1 Îkij â
âxk (112)
ThetorsiontensorTofD isgivenby:
T(X,Y)=DXYâDYXâ [X,Y] (113)
T (
â
âxi , â
âxj )
= n
â
k=1 Tkij â
âxk withTkij=Î k
ijâÎkji (114)
Thecurvature tensorRofD isgivenby:
R(X,Y)Z=DXDYZâDYDXZâD[X,Y]Z (115)
77
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik