Page - 106 - in Differential Geometrical Theory of Statistics
Image of the Page - 106 -
Text of the Page - 106 -
Entropy2016,18, 386
Combiningthis relationwith thatof 1
λ(x) ,wecandeduce thatλ(x)∂ 2Φ(θ)
∂θ2 =1andasλ(x)>0
then ∂2Φ(θ)
∂θ2 >0.
Fréchet emphasizes at this step [141], anotherway to approach the problem. We can select
arbitrarilyh(x)and l(x)andthenΦ(θ) isdeterminedby:
+∞
−∞ e ∂Φ(θ)
∂θ [h(x)−θ]+Φ(θ)+ (x)dx=1 (A25)
Thatcouldberewritten:
eθ. ∂Φ(θ)
∂θ −Φ(θ) = +∞
−∞ e ∂Φ(θ)
∂θ h(x)+ (x)dx (A26)
Ifwethenfixedarbitrarilyh(x)and l(x)andlet sanarbitraryvariable, the followingfunction
willbeanexplicitpositive functiongivenby eΨ(s):
+∞
−∞ es.h(x)+ (x)dx= eΨ(s) (A27)
Fréchetobtainedfinally the functionΦ(θ)as solutionof the equation [141]:
Φ(θ)= θ · ∂Φ(θ)
∂θ −Ψ (
∂Φ(θ)
∂θ )
(A28)
Fréchetnoted that this is theAlexisClairaut equation [141].
Thecase ∂Φ(θ)
∂θ = cstewouldreduce thedensity toa functionthatwouldbe independentofθ,
andsoΦ(θ) isgivenbyasingular solutionof thisClairautequation,which isuniqueandcouldbe
computedbyeliminatingthevariable sbetween:
Φ= θ ·s−Ψ(s) andθ= ∂Ψ(s)
∂s (A29)
Orbetween:
eθ·s−Φ(θ) = +∞
−∞ es·h(x)+ (x)dxand +∞
−∞ es·h(x)+ (x) [h(x)−θ]dx=0 (A30)
Φ(θ)=−log +∞
−∞ es·h(x)+ (x)dx+θ ·swhere s isgiven implicitlyby +∞
−∞ es·h(x)+ (x) [h(x)−θ]dx=0.
Thenweknowthedistinguishedfunction,H′ amongfunctionsH(X1,...,Xn)verifyingEθ [H]= θ
andsuchthatσH reaches foreachvalueofθ, anabsoluteminimum,equal to 1√
nσA .
For thepreviousequation:
h(x)= θ+ ∂logpθ(x)
∂θ
+∞
−∞ [
∂pθ(x)
∂θ ]2 dx
pθ(x) (A31)
106
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik