Page - 117 - in Differential Geometrical Theory of Statistics
Image of the Page - 117 -
Text of the Page - 117 -
Entropy2016,18, 386
154. Bini,D.A.;Garoni,C.; Iannazzo,B.;Capizzano,S.S.; Sesana,D.AsymptoticBehaviourandComputationof
Geometric-LikeMeansofToeplitzMatrices,SLA14Conference,Kalamata,Greece,September2014;Available
online: http://noether.math.uoa.gr/conferences/sla2014/sites/default/files/Iannazzo.pdf (accessedon
8–12September2014).
155. Bini, D.A.; Garoni, C.; Iannazzo, B.; Capizzano, S.S. Geometricmeans of toeplitzmatrices by positive
parametrizations. 2016, inpress.
156. Calvo,M.;Oller, J.M.Anexplicit solutionof informationgeodesicequations for themultivariatenormal
model.Stat.Decis. 1991,9, 119–138. [CrossRef]
157. Calvo,M.;Oller, J.M.Adistancebetweenmultivariatenormaldistributionsbased inanembedding into the
Siegelgroup. J.Multivar.Anal.Arch. 1990,35, 223–242. [CrossRef]
158. Calvo,M.;Oller, J.M.Adistancebetweenelliptical distributionsbased in anembedding into theSiegel
group. J.Comput.Appl.Math. 2002,145, 319–334. [CrossRef]
159. Chevallier,E.;Barbaresco,F.;Angulo, J.Probabilitydensityestimationonthehyperbolic spaceappliedto
radarprocessing. InGeometricScienceof InformationProceedings;LectureNotes inComputerScience;Springer:
Berlin/Heidelberg,Germany,2015;Volume9389,pp.753–761.
160. Chevallier,E.;Forget,T.;Barbaresco,F.;Angulo, J.KernelDensityEstimationontheSiegelSpaceApplied
toRadarProcessing.Availableonline: https://hal-ensmp.archives-ouvertes.fr/hal-01344910/document
(accessedon24October2016).
161. Costa, S.I.R.; Santosa, S.A.; Strapasson, J.E. Fisher information distance: A geometrical reading.
Discret. Appl.Math.2015,197, 59–69. [CrossRef]
162. Jeuris, B.; Vandebril, R.; Vandereycken, B. A survey and comparison of contemporary algorithms for
computingthematrixgeometricmean.Electron. Trans.Numer.Anal. 2012,39, 379–402.
163. Jeuris, B. RiemannianOptimization forAveragingPositiveDefiniteMatrices. Ph.D. Thesis, Katholieke
UniversiteitLeuven,Leuven,Belgium,2015.
164. Jeuris,B.;Vandebril,R.TheKählerMeanofBlock-ToeplitzMatriceswithToeplitzStructuredBlocks;Department
ofComputerScience,KULeuven: Leuven,Belgium,2015.
165. Maliavin, P. Invariant or quasi-invariant probabilitymeasures for infinite dimensional groups, Part II:
UnitarizingmeasuresorBerezinianmeasures. Jpn. J.Math. 2008,3, 19–47. [CrossRef]
166. Strapasson, J.E.; Porto, J.P.S.; Costa, S.I.R.Onbounds for the Fisher-Raodistance betweenmultivariate
normaldistributions.AIPConf. Proc. 2015,1641, 313–320.
167. Hua, L.K.HarmonicAnalysis of Functions of Several ComplexVariables in the ClassicalDomains; American
MathematicalSociety: Providence,RI,USA,1963.
168. Siegel,C.L.Symplecticgeometry.Am. J.Math. 1943,65, 1–86. [CrossRef]
169. Yoshizawa,S.;Tanabe,K.DualdifferentialgeometryassociatedwiththeKullback-Leibler informationon
theGaussiandistributionsandits2-parametersdeformations.SUTJ.Math. 1999,35, 113–137.
170. Skovgaard, L.T.ARiemannianGeometry of theMultivariateNormalModel; Technical Report for Stanford
University: Stanford,CA,USA,April1981.
171. Deza,M.M.;Deza,E.EncyclopediaofDistances, 3rded.;Springer: Berlin/Heidelberg,Germany,2013;p.242.
172. Casalis,M.Famillesexponentiellesnaturelles invariantesparungroupedetranslations.C.R.Acad. Sci. Ser.
IMath. 1988,307, 621–623. (InFrench)
173. Casalis,M.FamillesExponentiellesNaturellesInvariantesparunGroupe. Ph.D.Thesis,Thèsedel’Université
PaulSabatier,Toulouse,France,1990. (InFrench)
174. Casalis,M.Familles exponentiellesnaturelles sur rd invariantesparungroupe. Int. Stat. Rev. 1991, 59,
241–262. (InFrench) [CrossRef]
175. Casalis,M.Les famillesexponentiellesàvariancequadratiquehomogènesontdes loisdeWishart surun
cônesymétrique.C.R.Acad. Sci. Ser. IMath. 1991,312, 537–540. (InFrench)
176. Casalis,M.;Letac,G.Characterizationof theJørgensenset ingeneralizedlinearmodels.Test1994,3, 145–162.
[CrossRef]
177. Casalis,M.;Letac,G.TheLukacs-Olkin-Rubincharacterizationof theWishartdistributionsonsymmetric
cone.Ann. Stat. 1996,24, 763–786. [CrossRef]
178. Casalis,M.The2d+4simplequadraticnaturalexponential familiesonRd.Ann. Stat. 1996,24, 1828–1854.
179. Letac,G.Acharacterizationof theWishartexponential familiesbyaninvarianceproperty. J.Theor. Probab.
1989,2, 71–86. [CrossRef]
117
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik