Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 117 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 117 - in Differential Geometrical Theory of Statistics

Image of the Page - 117 -

Image of the Page - 117 - in Differential Geometrical Theory of Statistics

Text of the Page - 117 -

Entropy2016,18, 386 154. Bini,D.A.;Garoni,C.; Iannazzo,B.;Capizzano,S.S.; Sesana,D.AsymptoticBehaviourandComputationof Geometric-LikeMeansofToeplitzMatrices,SLA14Conference,Kalamata,Greece,September2014;Available online: http://noether.math.uoa.gr/conferences/sla2014/sites/default/files/Iannazzo.pdf (accessedon 8–12September2014). 155. Bini, D.A.; Garoni, C.; Iannazzo, B.; Capizzano, S.S. Geometricmeans of toeplitzmatrices by positive parametrizations. 2016, inpress. 156. Calvo,M.;Oller, J.M.Anexplicit solutionof informationgeodesicequations for themultivariatenormal model.Stat.Decis. 1991,9, 119–138. [CrossRef] 157. Calvo,M.;Oller, J.M.Adistancebetweenmultivariatenormaldistributionsbased inanembedding into the Siegelgroup. J.Multivar.Anal.Arch. 1990,35, 223–242. [CrossRef] 158. Calvo,M.;Oller, J.M.Adistancebetweenelliptical distributionsbased in anembedding into theSiegel group. J.Comput.Appl.Math. 2002,145, 319–334. [CrossRef] 159. Chevallier,E.;Barbaresco,F.;Angulo, J.Probabilitydensityestimationonthehyperbolic spaceappliedto radarprocessing. InGeometricScienceof InformationProceedings;LectureNotes inComputerScience;Springer: Berlin/Heidelberg,Germany,2015;Volume9389,pp.753–761. 160. Chevallier,E.;Forget,T.;Barbaresco,F.;Angulo, J.KernelDensityEstimationontheSiegelSpaceApplied toRadarProcessing.Availableonline: https://hal-ensmp.archives-ouvertes.fr/hal-01344910/document (accessedon24October2016). 161. Costa, S.I.R.; Santosa, S.A.; Strapasson, J.E. Fisher information distance: A geometrical reading. Discret. Appl.Math.2015,197, 59–69. [CrossRef] 162. Jeuris, B.; Vandebril, R.; Vandereycken, B. A survey and comparison of contemporary algorithms for computingthematrixgeometricmean.Electron. Trans.Numer.Anal. 2012,39, 379–402. 163. Jeuris, B. RiemannianOptimization forAveragingPositiveDefiniteMatrices. Ph.D. Thesis, Katholieke UniversiteitLeuven,Leuven,Belgium,2015. 164. Jeuris,B.;Vandebril,R.TheKählerMeanofBlock-ToeplitzMatriceswithToeplitzStructuredBlocks;Department ofComputerScience,KULeuven: Leuven,Belgium,2015. 165. Maliavin, P. Invariant or quasi-invariant probabilitymeasures for infinite dimensional groups, Part II: UnitarizingmeasuresorBerezinianmeasures. Jpn. J.Math. 2008,3, 19–47. [CrossRef] 166. Strapasson, J.E.; Porto, J.P.S.; Costa, S.I.R.Onbounds for the Fisher-Raodistance betweenmultivariate normaldistributions.AIPConf. Proc. 2015,1641, 313–320. 167. Hua, L.K.HarmonicAnalysis of Functions of Several ComplexVariables in the ClassicalDomains; American MathematicalSociety: Providence,RI,USA,1963. 168. Siegel,C.L.Symplecticgeometry.Am. J.Math. 1943,65, 1–86. [CrossRef] 169. Yoshizawa,S.;Tanabe,K.DualdifferentialgeometryassociatedwiththeKullback-Leibler informationon theGaussiandistributionsandits2-parametersdeformations.SUTJ.Math. 1999,35, 113–137. 170. Skovgaard, L.T.ARiemannianGeometry of theMultivariateNormalModel; Technical Report for Stanford University: Stanford,CA,USA,April1981. 171. Deza,M.M.;Deza,E.EncyclopediaofDistances, 3rded.;Springer: Berlin/Heidelberg,Germany,2013;p.242. 172. Casalis,M.Famillesexponentiellesnaturelles invariantesparungroupedetranslations.C.R.Acad. Sci. Ser. IMath. 1988,307, 621–623. (InFrench) 173. Casalis,M.FamillesExponentiellesNaturellesInvariantesparunGroupe. Ph.D.Thesis,Thèsedel’Université PaulSabatier,Toulouse,France,1990. (InFrench) 174. Casalis,M.Familles exponentiellesnaturelles sur rd invariantesparungroupe. Int. Stat. Rev. 1991, 59, 241–262. (InFrench) [CrossRef] 175. Casalis,M.Les famillesexponentiellesàvariancequadratiquehomogènesontdes loisdeWishart surun cônesymétrique.C.R.Acad. Sci. Ser. IMath. 1991,312, 537–540. (InFrench) 176. Casalis,M.;Letac,G.Characterizationof theJørgensenset ingeneralizedlinearmodels.Test1994,3, 145–162. [CrossRef] 177. Casalis,M.;Letac,G.TheLukacs-Olkin-Rubincharacterizationof theWishartdistributionsonsymmetric cone.Ann. Stat. 1996,24, 763–786. [CrossRef] 178. Casalis,M.The2d+4simplequadraticnaturalexponential familiesonRd.Ann. Stat. 1996,24, 1828–1854. 179. Letac,G.Acharacterizationof theWishartexponential familiesbyaninvarianceproperty. J.Theor. Probab. 1989,2, 71–86. [CrossRef] 117
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics