Page - 121 - in Differential Geometrical Theory of Statistics
Image of the Page - 121 -
Text of the Page - 121 -
entropy
Article
LinkbetweenLieGroupStatisticalMechanicsand
ThermodynamicsofContinua
GérydeSaxcé
LaboratoiredeMécaniquedeLille,CNRSFRE3723,UniversitédeLille1,Villeneuved’AscqF59655,France;
gery.desaxce@univ-lille1.fr;Tel.: +33-3-2033-7172
AcademicEditors: FrédéricBarbarescoandFrankNielsen
Received: 29April2016;Accepted: 7 July2016;Published: 12 July2016
Abstract: In thiswork,weconsider thevalueof themomentummapof thesymplecticmechanics
asanaffine tensor calledmomentumtensor. Fromthispointofview,weanalyze theunderlying
geometric structureof the theoriesofLiegroupstatisticalmechanicsandrelativistic thermodynamics
ofcontinua, formulatedbySouriau independentlyofeachother.Webridge thegapbetweenthemin
theclassicalGalileancontext. Thesegeometric structuresof the thermodynamicsare richandwe
think theymightbe a sourceof inspiration for thegeometric theoryof informationbasedon the
conceptofentropy.
Keywords: Lie groups; symplectic geometry; affine tensors; continuum thermodynamics;
statisticalmechanics
1. Introduction
In [1],Souriauproposes torevisitmechanics,emphasizing itsaffinenature. It is thisviewpoint
thatwewill adopthere, starting fromageneralizationof theconceptofmomentumunder the formof
anaffineobject [2].Ourstartingpoint is closelyrelatedtoSouriau’sapproachonthebasisof twokey
ideas: anewdefinitionofmomentaandthecrucialpartplayedbytheaffinegroupofRn. Thisgroup
proposesan intentionallypoorgeometrical structure. Indeed, thischoice isguidedbythefact that it
containsbothGalileoandPoincarégroups[3,4],whichallowsthesimultaneous involvementof the
Galileanandrelativisticmechanics. In the follow-up,weshalldetailonly theapplications toclassical
mechanicsandthermodynamics.
Aclassof tensorscorrespondstoeachgroup. Thecomponentsof these tensorsare transformed
accordingto theactionof theconsideredgroup. Thestandardtensorsdiscussedin the literatureare
thoseof the lineargroupofRn. Wewill call them linear tensors. A fruitful standpoint consists of
consideringtheclassof theaffinetensors, correspondingto theaffinegroup[2,5]. Thisviewpoint is
closelyrelatedtosymplecticmechanics [3,4,6] in thesense that thevaluesof themomentummapare
just thecomponentsof themomentumtensors.
Thepresentpaper is structuredas follows. In Section2,wepresent briefly the affine tensors,
startingwith themostsimpleones: thepointsofanaffinespacewhichare1-contravariantandthereal
affinefunctionsonthis spaceoraffine formswhichare1-covariant.AsasubgroupGof theaffinegroup
ofRnnaturallyactsonto theaffinetensorsbyrestrictiontoGof their transformation law,wedefine
thecorrespondingG-tensor. InSection3,weuse this framework,definingthemomentumasamixed
1-covariantand1-contravariantaffinetensor. IfG isaLiegroup,wedemonstrate the important fact
that its transformationlaw isnothingother thanthecoadjointrepresentationofG inthedualg∗of itsLie
algebra. InSection4,werecallclassical toolsofsymplecticmechanicsaroundtheconceptofsymplectic
action and amomentummap. An important result called theKirillov–Kostant–Souriau theorem
reveals theorbit symplectic structure. InSection5,werecall shortly themainconceptsof theLiegroup
statisticalmechanicsproposedbySouriau in [3,4], usinggeometric tools. InSection6,wepresent
Entropy2016,18, 254 121 www.mdpi.com/journal/entropy
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik