Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 121 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 121 - in Differential Geometrical Theory of Statistics

Image of the Page - 121 -

Image of the Page - 121 - in Differential Geometrical Theory of Statistics

Text of the Page - 121 -

entropy Article LinkbetweenLieGroupStatisticalMechanicsand ThermodynamicsofContinua GérydeSaxcé LaboratoiredeMécaniquedeLille,CNRSFRE3723,UniversitédeLille1,Villeneuved’AscqF59655,France; gery.desaxce@univ-lille1.fr;Tel.: +33-3-2033-7172 AcademicEditors: FrédéricBarbarescoandFrankNielsen Received: 29April2016;Accepted: 7 July2016;Published: 12 July2016 Abstract: In thiswork,weconsider thevalueof themomentummapof thesymplecticmechanics asanaffine tensor calledmomentumtensor. Fromthispointofview,weanalyze theunderlying geometric structureof the theoriesofLiegroupstatisticalmechanicsandrelativistic thermodynamics ofcontinua, formulatedbySouriau independentlyofeachother.Webridge thegapbetweenthemin theclassicalGalileancontext. Thesegeometric structuresof the thermodynamicsare richandwe think theymightbe a sourceof inspiration for thegeometric theoryof informationbasedon the conceptofentropy. Keywords: Lie groups; symplectic geometry; affine tensors; continuum thermodynamics; statisticalmechanics 1. Introduction In [1],Souriauproposes torevisitmechanics,emphasizing itsaffinenature. It is thisviewpoint thatwewill adopthere, starting fromageneralizationof theconceptofmomentumunder the formof anaffineobject [2].Ourstartingpoint is closelyrelatedtoSouriau’sapproachonthebasisof twokey ideas: anewdefinitionofmomentaandthecrucialpartplayedbytheaffinegroupofRn. Thisgroup proposesan intentionallypoorgeometrical structure. Indeed, thischoice isguidedbythefact that it containsbothGalileoandPoincarégroups[3,4],whichallowsthesimultaneous involvementof the Galileanandrelativisticmechanics. In the follow-up,weshalldetailonly theapplications toclassical mechanicsandthermodynamics. Aclassof tensorscorrespondstoeachgroup. Thecomponentsof these tensorsare transformed accordingto theactionof theconsideredgroup. Thestandardtensorsdiscussedin the literatureare thoseof the lineargroupofRn. Wewill call them linear tensors. A fruitful standpoint consists of consideringtheclassof theaffinetensors, correspondingto theaffinegroup[2,5]. Thisviewpoint is closelyrelatedtosymplecticmechanics [3,4,6] in thesense that thevaluesof themomentummapare just thecomponentsof themomentumtensors. Thepresentpaper is structuredas follows. In Section2,wepresent briefly the affine tensors, startingwith themostsimpleones: thepointsofanaffinespacewhichare1-contravariantandthereal affinefunctionsonthis spaceoraffine formswhichare1-covariant.AsasubgroupGof theaffinegroup ofRnnaturallyactsonto theaffinetensorsbyrestrictiontoGof their transformation law,wedefine thecorrespondingG-tensor. InSection3,weuse this framework,definingthemomentumasamixed 1-covariantand1-contravariantaffinetensor. IfG isaLiegroup,wedemonstrate the important fact that its transformationlaw isnothingother thanthecoadjointrepresentationofG inthedualg∗of itsLie algebra. InSection4,werecallclassical toolsofsymplecticmechanicsaroundtheconceptofsymplectic action and amomentummap. An important result called theKirillov–Kostant–Souriau theorem reveals theorbit symplectic structure. InSection5,werecall shortly themainconceptsof theLiegroup statisticalmechanicsproposedbySouriau in [3,4], usinggeometric tools. InSection6,wepresent Entropy2016,18, 254 121 www.mdpi.com/journal/entropy
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics