Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 122 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 122 - in Differential Geometrical Theory of Statistics

Image of the Page - 122 -

Image of the Page - 122 - in Differential Geometrical Theory of Statistics

Text of the Page - 122 -

Entropy2016,18, 254 brieflythecornerstoneresultsof theGalileanversionofa thermodynamicsofcontinuacompatible withgeneral relativityproposedbySouriau in [7,8] independently of his statisticalmechanics. In Section7,wereveal the linkbetweenthepreviousrelativistic thermodynamicsofcontinuaandLie groupstatisticalmechanics in theclassicalGalileancontext,working insevensteps. 2.AffineTensors Pointsofanaffinespace.LetAT beanaffinespaceassociatedtoalinearspaceT offinitedimension n. By thechoiceofanaffineframe f composedofabasisofT andanorigina0,wecanassociate to eachpointaasetofn (affine)componentsVigathered in then-columnV∈Rn. Forachangeofaffine frames, the transformation lawfor thecomponentsofapoint reads: V=C+PV′ , (1) which isanaffinerepresentationof theaffinegroupofRndenotedAf f(n). It is clearlydifferent from theusual transformation lawofvectorsV=PV′. Affine forms.TheaffinemapsΨ fromAT intoRarecalledaffineformsandtheirset isdenoted A∗T . Inanaffineframe,Ψ is representedbyanaffinefunctionΨ fromRn intoR.Hence, itholds: Ψ(a)=Ψ(V)=χ+ΦV , whereχ=Ψ(0)=Ψ(a0)andΦ= lin(Ψ) is an-row. WecallΦ1,Φ2, · · · ,Φn,χ the componentsof Ψor, equivalently, the coupleofχ and the rowΦ collecting theΦα. The setA∗T is a linear space ofdimension (n+1) called thevectordualofAT . Ifwechange theaffine frame, thecomponents ofanaffine formaremodifiedaccording to the inducedactionofAf f(n), that leads to, taking into account (1): χ′=χ−ΦP−1C, Φ′=ΦP−1 , (2) which isa linearrepresentationofAf f(n). Affine tensors.Wecangeneralize thisconstructionanddefineanaffinetensorasanobject: • thatassignsasetofcomponents toeachaffineframe f ofanaffinespaceAT offinitedimensionn, • witha transformation law,whenchangingof frames,which isanaffineora linear representation ofAf f(n). With thisdefinition, theaffine tensorsareanaturalgeneralizationof theclassical tensors thatwe shall call linear tensors, these lastonesbeingtrivialaffinetensors forwhichtheaffinetransformation a=(C,P)acts throughits linearpartP= lin(a). Anaffinetensorcanbeconstructedasamapwhich isaffineor linearwithrespect toeachof itsarguments. Similar to the linear tensors, theaffineonescan beclassified in three families: covariants, contravariantandmixed. Themostsimpleaffine tensorsare thepointswhichare1-contravariantandtheaffineformswhichare1-covariantbutwecanconstruct morecomplexoneshavingastrongphysicalmeaning: the torsors (proposedin[5]), the co-torsorsand themomentaextensivelydetailledin[2]. Formoredetailsontheaffinedualspace,affinetensorproduct, affinewedgeproductandaffinetangentbundles, thereader interested in this topic is referredto the so-calledAV-differentialgeometry [9]. G-tensors.AsubgroupGofAf f(n)naturallyactsonto theaffine tensorsbyrestriction toGof their transformation law.LetFGbeasetofaffineframesofwhichG isa transformationgroup.The elementsofFG arecalledG-frames.AG-tensor isanobject: • thatassignsasetofcomponents toeachG-frame f, • witha transformation law,whenchangingof frames,which isanaffineora linear representation ofG. 122
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics