Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 125 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 125 - in Differential Geometrical Theory of Statistics

Image of the Page - 125 -

Image of the Page - 125 - in Differential Geometrical Theory of Statistics

Text of the Page - 125 -

Entropy2016,18, 254 whereψ → ψ′= a ·ψ is the induced action of the one ofG onN . It isworth observing it is just (6)with μ= ψ(η) andμ′= ψ′(η). In this sense, the values of themomentummap are just the components of the momentumG-tensorsdefined in thepreviousSection. Remark3. WesawatRemarkofSection3thatthemomentumG-tensorμ is identifiedtotheorbitμ= orb(μ, f) and,disregarding the frames for simplification,wecan identifyμ to the componentorbit orb(μ). 5. LieGroupStatisticalMechanics In order to discover the underlined geometric structure of the statisticalmechanics, we are interested in theaffinemapsΘon theaffine spaceofmomentumtensors. Inanaffine frame,Θ is representedbyanaffinefunctionΘ fromg∗ intoR: Θ(μ)=Θ(μ)= z+μZ , where z=Θ(0)=Θ(μ0)andZ= lin(Θ)∈ gare theaffinecomponentsofΘ. If thecomponentsof themomentumtensorsaremodifiedaccordingto (6), thechangeofaffinecomponentsofΘ isgivenby the inducedaction: z= z′−θ(a)Ad(a)Z′, Z=Ad(a)Z′ . (9) ThenΘ isaG-tensors. In [3,4],Souriauproposedastatisticalmechanicsmodelusinggeometric tools. Letdλbeameasureonμ= orb(μ)andaGibbsprobabilitymeasure pdλwith: p= e−Θ(μ) = e−(z+μZ) . Thenormalizationcondition ∫ orb(μ)pdλ=1 links thecomponentsofΘ, allowingtoexpressz in termsofZ: z(Z)= ln ∫ orb(μ) e−μZdλ . (10) Thecorrespondingentropyandmeanmomentaare: s(Z) = − ∫ orb(μ) p lnpdλ= z+MZ, M(Z) = ∫ orb(μ) μpdλ=−∂z ∂Z , (11) satisfyingthesametransformationlawastheone(6)ofμ.HenceMarethecomponentsofamomentum tensorMwhichcanbeidentifiedtotheorbitorb(M), thatdefinesamapμ →M, i.e., acorrespondance betweentwoorbits. Thisconstruction is formaland, forreasonsof integrability, the integralswillbe performedonlyonasubsetof theorbitaccordingtoanheuristicwayexplainedlatteron. Peoplegenerallyconsider that thedefinitionof theentropy is relevant forapplications insofaras thenumberofparticles in thesystemisveryhuge. For instance, thenumberofatomscontained inone mole isAvogadro’snumberequal to6×1023. It isworthnotingthatValléeandLerintiuproposeda generalizationof the idealgas lawbasedonconvexanalysisandadefinitionofentropywhichdoes not require theclassicalapproximations (Stirling’sFormula) [11]. 6.RelativisticThermodynamicsofContinua Independently of his statistical mechanics, Souriau proposed in [7,8] a thermodynamics of continua compatiblewith general relativity. Following in his footsteps, one can quote theworks by Iglesias [12]andVallée [13]. InhisPh.Dthesis,Vallée studied the invariant formofconstitutive laws in thecontextof special relativitywhere thegravitationeffectsareneglected. In [14], theauthor andValléeproposedaGalileanversionof this theoryofwhichwerecall thecornerstoneresults. For moredetails, thereader is referredto [2]. 125
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics