Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 127 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 127 - in Differential Geometrical Theory of Statistics

Image of the Page - 127 -

Image of the Page - 127 - in Differential Geometrical Theory of Statistics

Text of the Page - 127 -

Entropy2016,18, 254 Combiningthis resultwith thegeometricversionof thefirstprincipleof thermodynamics: DivT=0, Div −→ N =0, , (18) In [7,8],Souriauclaimedthat the4-fluxofentropyisgivenby: −→ S =T −→ W+ζ −→ N , (19) andprovedit isdivergence free.Moreover thespecificentropy s isan integralof themotion[2]. Letus introducenowthe5-temperature −ˆ→ W representedbythe5-column: Wˆ= ( W ζ ) , (20) andthe tensor Tˆ representedbythe4×5matrix Tˆ= ( T N ) (21) whichallowsgatheringEquation(18) in themorecompact form Div Tˆ=0 andrepresenting(19) in themorecompact form: S= TˆWˆ , localexpressionof thecontractedproductof Tˆand ˆW: S= Tˆ · ˆW , (22) It is thecornerstoneequationofSouriau’s theory. In this form, it canbeseenasageometrization ofClausius’definitionof theentropyasstate functionofasystem: S=Q θ , (23) whereQ isa theamountofheatabsorbedinanisothermalprocess. Scalarquantitiesarereplacedby analogoustensorialones:S byits4-flux S,Qby Tˆandβ=1/θbyits5-flux ˆW. Replacing(19)by(22) isnotapurelyformalmanipulationbut it takesastrongmeaningwhenconsideringBargmann’sgroup B [15],acentralextensionofGalileo’sone[16], setof theaffinetransformationsdXˆ′ → dXˆ= PˆdXˆ′+Cˆ ofR5 suchthat. Pˆ= ⎛⎜⎝ 1 0 0u R 0 1 2 ‖u‖2 uTR 1 ⎞⎟⎠ . (24) TheB-tensorsarecalledBargmanniantensors. Fromthisviewpoint, the5-column(20) represents aBargmannianvector ˆW of transformation law: Wˆ= PˆWˆ′ , (25) and the 4×5matrix (21) represents a Bargmannian 1-covariant and 1-contravariant tensor Tˆ of transformation law: Tˆ=P Tˆ′ Pˆ−1 . 127
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics