Page - 127 - in Differential Geometrical Theory of Statistics
Image of the Page - 127 -
Text of the Page - 127 -
Entropy2016,18, 254
Combiningthis resultwith thegeometricversionof thefirstprincipleof thermodynamics:
DivT=0, Div −→
N =0, , (18)
In [7,8],Souriauclaimedthat the4-fluxofentropyisgivenby:
−→
S =T −→
W+ζ −→
N , (19)
andprovedit isdivergence free.Moreover thespecificentropy s isan integralof themotion[2].
Letus introducenowthe5-temperature −ˆ→
W representedbythe5-column:
Wˆ= (
W
ζ )
, (20)
andthe tensor Tˆ representedbythe4×5matrix
Tˆ= (
T N )
(21)
whichallowsgatheringEquation(18) in themorecompact form
Div Tˆ=0
andrepresenting(19) in themorecompact form:
S= TˆWˆ ,
localexpressionof thecontractedproductof Tˆand ˆW:
S= Tˆ · ˆW , (22)
It is thecornerstoneequationofSouriau’s theory. In this form, it canbeseenasageometrization
ofClausius’definitionof theentropyasstate functionofasystem:
S=Q
θ , (23)
whereQ isa theamountofheatabsorbedinanisothermalprocess. Scalarquantitiesarereplacedby
analogoustensorialones:S byits4-flux S,Qby Tˆandβ=1/θbyits5-flux ˆW. Replacing(19)by(22)
isnotapurelyformalmanipulationbut it takesastrongmeaningwhenconsideringBargmann’sgroup
B [15],acentralextensionofGalileo’sone[16], setof theaffinetransformationsdXˆ′ → dXˆ= PˆdXˆ′+Cˆ
ofR5 suchthat.
Pˆ= ⎛⎜⎝ 1 0
0u
R 0
1
2 ‖u‖2 uTR 1 ⎞⎟⎠ . (24)
TheB-tensorsarecalledBargmanniantensors. Fromthisviewpoint, the5-column(20) represents
aBargmannianvector ˆW of transformation law:
Wˆ= PˆWˆ′ , (25)
and the 4×5matrix (21) represents a Bargmannian 1-covariant and 1-contravariant tensor Tˆ of
transformation law:
Tˆ=P Tˆ′ Pˆ−1 .
127
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik