Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 132 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 132 - in Differential Geometrical Theory of Statistics

Image of the Page - 132 -

Image of the Page - 132 - in Differential Geometrical Theory of Statistics

Text of the Page - 132 -

Entropy2016,18, 254 Finally: z= 1 2 ln(det(C))− 3 2 lnβ+Cte , (47) where the value of the constant is not relevant in the sequel since it does not depend onW and F (through C). It isworth remarking that, unlike orb(μ), the subsetV0×R3×S2 is not preservedbytheactionanddependsonthearbitrarychoiceofV0.Nevertheless,z—then sand M—dependsonV0 only throughln(V0)which isabsorbedintheconstantandhasnoinfluence onthederivatives (17). Aspointedout byBarbaresco [17], there is apuzzlinganalogybetween the integral occuring in (10)andKoszul–Vinbergcharacteristic function[18,19]: ψΩ(Z)= ∫ Ω∗ e−μZdλ , whereΩ isasharpopenconvexconeandΩ∗ is thesetof linearstrictlypositive formson Ω¯−{0}. ConsideringGalileo’sgroup, it isworthremarkingthat theconeoffuturedirectedtimelikevectors (i.e., suchthatβ>0) [20] ispreservedbylinearGalileantransformations. Themomentumorbits arecontainedinΩ∗but the integraldoesnotconvergeontheorbitsoronΩ∗. • Step5: identification. It isbasedonthe followingresult. Theorem2. The transformation lawof the temperaturevector ˆW is the sameas theoneof affinemapsΘ on theaffine spaceofmomentumtensors through the identification: Z=(−W,0), z=mζ , Proof. Firstofall, letusverifythat theformZ=(−W,0)doesnotdependonthechoiceof the affineframe. Indeed,startingfromZ′=(−W′,0)andapplyingtheadjointrepresentation(5)with dC′=−W′anddP′=0,wefindthatdC=−WanddP=0with: W=PW′ . Besides,usingthenotationsof (30),Equation(9)gives: z= z′−θ(a)Ad(a)Z′= z′+KmPW′ . Ontheotherhand, letWˆbethe5-column(20) representingthe temperaturevector: Wˆ= ( W ζ ) = ⎛⎜⎝ βw ζ ⎞⎟⎠ . Takingintoaccount (12)and(31), it iseasytoverify that its transformationlaw(25)withthe linear Bargmanniantransformation(24)canberecastas:( W ζ ) = ( P 0 F1P 1 )( W′ ζ′ ) , whichis thetransformationlawoftheaffinemapΘprovidedz=mζ, thatachievestheproof. 132
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics