Page - 132 - in Differential Geometrical Theory of Statistics
Image of the Page - 132 -
Text of the Page - 132 -
Entropy2016,18, 254
Finally:
z= 1
2 ln(det(C))− 3
2 lnβ+Cte , (47)
where the value of the constant is not relevant in the sequel since it does not depend onW
and F (through C). It isworth remarking that, unlike orb(μ), the subsetV0×R3×S2 is not
preservedbytheactionanddependsonthearbitrarychoiceofV0.Nevertheless,z—then sand
M—dependsonV0 only throughln(V0)which isabsorbedintheconstantandhasnoinfluence
onthederivatives (17).
Aspointedout byBarbaresco [17], there is apuzzlinganalogybetween the integral occuring
in (10)andKoszul–Vinbergcharacteristic function[18,19]:
ψΩ(Z)= ∫
Ω∗ e−μZdλ ,
whereΩ isasharpopenconvexconeandΩ∗ is thesetof linearstrictlypositive formson Ω¯−{0}.
ConsideringGalileo’sgroup, it isworthremarkingthat theconeoffuturedirectedtimelikevectors
(i.e., suchthatβ>0) [20] ispreservedbylinearGalileantransformations. Themomentumorbits
arecontainedinΩ∗but the integraldoesnotconvergeontheorbitsoronΩ∗.
• Step5: identification. It isbasedonthe followingresult.
Theorem2. The transformation lawof the temperaturevector ˆW is the sameas theoneof affinemapsΘ
on theaffine spaceofmomentumtensors through the identification:
Z=(−W,0), z=mζ ,
Proof. Firstofall, letusverifythat theformZ=(−W,0)doesnotdependonthechoiceof the
affineframe. Indeed,startingfromZ′=(−W′,0)andapplyingtheadjointrepresentation(5)with
dC′=−W′anddP′=0,wefindthatdC=−WanddP=0with:
W=PW′ .
Besides,usingthenotationsof (30),Equation(9)gives:
z= z′−θ(a)Ad(a)Z′= z′+KmPW′ .
Ontheotherhand, letWˆbethe5-column(20) representingthe temperaturevector:
Wˆ= (
W
ζ )
= ⎛⎜⎝ βw
ζ ⎞⎟⎠ .
Takingintoaccount (12)and(31), it iseasytoverify that its transformationlaw(25)withthe linear
Bargmanniantransformation(24)canberecastas:(
W
ζ )
= (
P 0
F1P 1 )(
W′
ζ′ )
,
whichis thetransformationlawoftheaffinemapΘprovidedz=mζ, thatachievestheproof.
132
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik