Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 141 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 141 - in Differential Geometrical Theory of Statistics

Image of the Page - 141 -

Image of the Page - 141 - in Differential Geometrical Theory of Statistics

Text of the Page - 141 -

Entropy2016,18, 433 6 TheSimilarityStructureandtheHyperbolicity 196 7 SomeHighlightingConclusions 197 7.1 TheTotalKVCohomologyandtheDifferentialTopology . . . . . . . . . . . . . . . . . . 197 7.2 TheKVCohomologyandtheGeometryofKoszul . . . . . . . . . . . . . . . . . . . . . . 198 7.3 TheKVCohomologyandtheInformationGeometry . . . . . . . . . . . . . . . . . . . . 198 7.4 TheDifferentialTopologyandtheInformationGeometry . . . . . . . . . . . . . . . . . . 198 7.5 TheKVCohomologyandtheLinearizationProblemforWebs . . . . . . . . . . . . . . . 198 8 B.TheTheoryofStatisticaLModels 199 8.1 ThePreliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 8.2 TheCategoryFB(Γ,Ξ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 8.2.1 TheObjectsofFB(Γ,Ξ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 8.2.2 TheMorphismsofFB(Γ,Ξ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 8.3 TheCategoryGM(Ξ,Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 8.3.1 TheObjectsofGM(Ξ,Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 8.3.2 TheGlobalProbabilityDensityofaStatisticalModel . . . . . . . . . . . . . . . . 208 8.3.3 TheMorphismsofGM(Ξ,Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 8.3.4 TwoAlternativeDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 8.3.5 Fisher Information inGM(Ξ,Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 8.4 ExponentialModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 8.4.1 TheEntropyFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 8.4.2 TheFisher Informationas theHessianof theLocalEntropyFlow . . . . . . . . . 213 8.4.3 TheAmari-ChentsovConnections inGM(Ξ,Ω) . . . . . . . . . . . . . . . . . . . 213 8.4.4 TheHomologicalNatureof theProbabilityDensity . . . . . . . . . . . . . . . . . 214 8.4.5 AnotherHomologicalNatureofEntropy . . . . . . . . . . . . . . . . . . . . . . . 215 9 TheModuliSpaceof theStatisticalModels 216 10 TheHomologicalStatisticalModels 221 10.1 TheCohomologyMappingofHSM(Ξ,Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 10.2 AnInterpretationof theEquivariantClass [Q] . . . . . . . . . . . . . . . . . . . . . . . . 223 10.3 LocalVanishingTheoremsin theCategoryHSM(Ξ,Ω) . . . . . . . . . . . . . . . . . . 223 11 TheHomologicalStatisticalModelsandtheGeometryofKoszul 226 12 Examples 226 13 HighlightingConclusions 229 13.1 Criticisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 13.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 13.3 KVHomologyandLocalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 13.4 TheHomologicalNatureof the InformationGeometry . . . . . . . . . . . . . . . . . . . 229 13.5 HomologicalModelsandHessianGeometry . . . . . . . . . . . . . . . . . . . . . . . . . 230 A 230 A.1 TheAffinelyFlatGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 A.2 TheHessianGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 A.3 TheGeometryofKoszul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 A.4 TheInformationGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 A.5 TheDifferentialTopologyofaRiemannianManifold . . . . . . . . . . . . . . . . . . . . 232 141
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics