Page - 9 - in Contributions to GRACE Gravity Field Recovery - Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations
Image of the Page - 9 -
Text of the Page - 9 -
2.4 Parameter Elimination
Given a normal equation systemNxˆ=nwhere only some of the parameters xˆ1 are
of interest and the remaining parameters xˆ2 are only necessary for proper modelling
of the system, these non-target parameters can be eliminated from the system. Let the
normal equation system be partitioned
as[
N11 N12
NT12 N22 ][
xˆ1
xˆ2 ]
= [
n1
n2 ]
. (2.4.1)
Solving the second matrix equation of eq. (2.4.1) for xˆ2 gives
xˆ2=N −1
22 (
n2−NT12xˆ1 )
, (2.4.2)
assuming thatN22 is invertible. Equation (2.4.2) can then be inserted into the first
equation of eq. (2.4.1), giving
N11xˆ1+ N12 (
N−122 (
n2−NT12xˆ1 ))
=n1
N11xˆ1+N12N −1
22n2−N12N−122NT12xˆ1=n1(
N11−N12N−122NT12 )
xˆ1=n1−N12N−122n2 . (2.4.3)
More compactly, this isN′xˆ1=n′, with
N′=N11−N12N−122NT12 and n′=n1−N12N−122n2 . (2.4.4)
The system eq. (2.4.4) gives the same solution for xˆ1 as eq. (2.4.1). Solving for xˆ1 in
this manner can be advantageous, depending on the structure and size of the initial
normal equation system.
2.5 Variance Propagation
Given a functional relationship between some dependent variables y and a set of
parameters xwith given covariance Σxx, the covariance matrix of the dependent
variables is (e.g. Niemeier, 2008)
Σyy=BΣxxB
T (2.5.1)
with
B= ∂y
∂x . (2.5.2)
2.4 Parameter Elimination 9
Contributions to GRACE Gravity Field Recovery
Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations
- Title
- Contributions to GRACE Gravity Field Recovery
- Subtitle
- Improvements in Dynamic Orbit Integration, Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations
- Author
- Matthias Ellmerr
- Publisher
- Verlag der Technischen Universität Graz
- Location
- Graz
- Date
- 2018
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-85125-646-8
- Size
- 21.0 x 29.7 cm
- Pages
- 185
- Keywords
- Geodäsie, Gravitation, Geodesy, Physics, Physik
- Categories
- Naturwissenschaften Physik
- Technik