Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
TagungsbÀnde
Intelligent Environments 2019 - Workshop Proceedings of the 15th International Conference on Intelligent Environments
Page - 45 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 45 - in Intelligent Environments 2019 - Workshop Proceedings of the 15th International Conference on Intelligent Environments

Image of the Page - 45 -

Image of the Page - 45 - in Intelligent Environments 2019 - Workshop Proceedings of the 15th International Conference on Intelligent Environments

Text of the Page - 45 -

Figure2. ROCCurveComparison. In the future,weconsider strengthening thequalityofdata, suchas considering the cyclicality of the economy, so that the data covers at least one full economic cycle, and collectingmoreunstructured trainingdata tomakemore complexdeep learningmodels applicable.Alsowewouldconsidermoreeconomicsimplications,suchasdistinguishing between thedifferent effectsofmonetaryandïŹscalpolicieson theadequacyofcapital. References [1] DiamondDW,DybvigPH.Bankruns,deposit insurance,andliquidity[J]. Journalofpoliticaleconomy, 1983,91(3):401-419. [2] Liquidity riskmeasurement andmanagement: a practitioner’s guide to global best practices[M]. John Wiley&Sons,2006. [3] Batra R,Daudpota SM. Integrating StockTwitswith sentiment analysis for better prediction of stock pricemovement[C]2018 InternationalConferenceonComputing,Mathematics andEngineeringTech- nologies (iCoMET). IEEE,2018:1-5. [4] FengF,ChenH,HeX,etal. ImprovingStockMovementPredictionwithAdversarialTraining[J]. arXiv preprint arXiv:1810.09936,2018. [5] DingX, ZhangY, Liu T, et al. Using structured events to predict stock pricemovement: An empiri- cal investigation[C]//Proceedings of the 2014Conference onEmpiricalMethods inNatural Language Processing (EMNLP).2014:1415-1425. [6] SundermeyerM,SchluterR,NeyH.LSTMneural networks for languagemodeling[C]//Thirteenth an- nual conferenceof the international speechcommunicationassociation.2012. [7] TiantianWang, ”Researchof feature selection and feature extractionmethods in internet news classiïŹ- cation”,universityof scienceand technologyofchina,2016. [8] GoldbergY,LevyO.word2vecExplained:derivingMikolovetal.’snegative-samplingword-embedding method[J]. arXivpreprint arXiv:1402.3722,2014. [9] Soucy P, Mineau G W. Beyond TFIDF weighting for text categorization in the vector space mod- el[C]//IJCAI.2005,5:1130-1135. [10] TangJ,DengC,HuangGB.Extreme learningmachine formultilayerperceptron[J]. IEEEtransactions onneuralnetworksand learningsystems,2016,27(4):809-821. [11] MetzCE,HermanBA,RoeCA. Statistical comparison of twoROC-curve estimates obtained from partially-paireddatasets[J].MedicalDecisionMaking,1998,18(1):110-121. [12] ZhouZH.MachineLearning[M].Beijing:TsinghuaUniversityPress, 2016:23-51. Y.Duetal. /Predicting the InterbankCapitalAdequacyLevelBasedonFinancialDataAnalysis 45
back to the  book Intelligent Environments 2019 - Workshop Proceedings of the 15th International Conference on Intelligent Environments"
Intelligent Environments 2019 Workshop Proceedings of the 15th International Conference on Intelligent Environments
Title
Intelligent Environments 2019
Subtitle
Workshop Proceedings of the 15th International Conference on Intelligent Environments
Authors
Andrés Muñoz
Sofia Ouhbi
Wolfgang Minker
Loubna Echabbi
Miguel Navarro-CĂ­a
Publisher
IOS Press BV
Date
2019
Language
German
License
CC BY-NC 4.0
ISBN
978-1-61499-983-6
Size
16.0 x 24.0 cm
Pages
416
Category
TagungsbÀnde
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Intelligent Environments 2019