Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Photovoltaic Materials and Electronic Devices
Page - 83 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 83 - in Photovoltaic Materials and Electronic Devices

Image of the Page - 83 -

Image of the Page - 83 - in Photovoltaic Materials and Electronic Devices

Text of the Page - 83 -

  (c)  Figure  7.  Deposition  rates  of  (a)  n‐,  (b)  i‐,  and  (c)  p‐layers  on  ZnO/Ag,  n‐layer/ZnO/Ag,  and  i‐layer/glass,  respectively,  as  functions  of  R.    Figure  8.  Schematic  of  a  single  junction  a‐Si:H  based  solar  cell  prepared  in  the  n‐i‐p  configuration.  Each  amorphous  or  protocrystalline  Si:H  layer  is  optimized  to  a  value  of  R  with  an  intended  thickness.  3.3.  Ex  situ  SE  Study  of  a‐Si:H  in  n‐i‐p  Configuration  Solar  Cells  from  the  Mid‐IR  to  Near  UV Ellipsometric  spectra  from  0.04  to  5.0  eV  were  collected  and  analyzed  for  a  ZnO/Ag  BR    over‐coated  with  intrinsic  a‐Si:H  and  n‐type  a‐Si:H  layers.  This  ZnO/Ag  BR  sample  was  over‐coated  with  a‐Si:H  to  determine  ε  for  a‐Si:H  over  the  0.04  to  5.0  eV  range  as  well  as  identify  modifications  to  the  underlying  ZnO  due  to  this  over‐deposition.  The  structural  model  for  the  a‐Si:H  coated  ZnO/Ag  BR  consisted  of  a  semi‐infinite  opaque  Ag  metal  layer,  a  108  Å  ZnO  +  Ag  interfacial  layer  with  fixed  thickness  from  the  previous  analysis  given  in  Table  3,  an  average  2751     5  Å  bulk  ZnO  layer  produced  by  the  mean  db  values  obtained  from  the  simultaneous  fitting  of  the  IR  and  the  near  IR‐UV  range  spectra,  a  84     1  Å  0.5  n‐type  a‐Si:H  +  0.5  ZnO  Bruggeman  effective  medium  approximation  interfacial  layer,  a  278     1  Å  a‐Si:H  n‐layer,  a  30     1  Å  0.5  intrinsic  +  0.5  n‐type  a‐Si:H  Bruggeman  effective  medium  approximation  interfacial  layer,  a  3621     2  Å  bulk  intrinsic  a‐Si:H  layer,  and  a    29     1  Å  surface  roughness  represented  using  Bruggeman  effective  medium  approximation  of  0.5  intrinsic  a‐Si:H/0.5  void  volume  fractions.  The  n‐layer  +  ZnO  interface,  n‐layer  bulk  layer,  and  n‐layer  surface  roughness  thicknesses  are  obtained  from  in  situ  RTSE  measurements  and  analysis  prior  to  intrinsic  a‐Si:H  deposition.  The  intrinsic  +  n‐type  a‐Si:H  interface  thickness  is  set  at  the  same  value  as  the  n‐layer  surface  roughness  assuming  that  over‐deposited  intrinsic  a‐Si:H  fill  the  voids  in  the  n‐layer  surface.  Parameters  describing  ε  for  ZnO  and  a‐Si:H  are  listed  in  Table  5.  As  with  the  IR  extended  analysis  of  the  ZnO/Ag  sample,  a  common  parameterization  of  ε  for  the  materials  over  the  full  spectral  range  was  applied,  the  bulk  layer  thicknesses  for  the  ZnO  and  intrinsic  a‐Si:H  layers  were  fit  independently  for  spectra  collected  from  each  instrument,  and  all  other  layer  thicknesses  were  either  fixed  from  prior  analyses  or  kept  common  between  the  two  sets  of  spectra.  For  the  i‐layer,  the  nominal  substrate  temperature  and  hydrogen  dilution  ratio  were  T  =  200°C  and  R  =  10,  Figure 8. Schematic of a single junction a-Si:H based solar cell prepared in the n-i-p configuration. Each amorphous or protocrystalline Si:H layer is optimized to a valueofRwithanintendedthickness. 3.3. ExSituSEStudy f a-Si:H inn-i-pConfigu ationSolarCells fromtheMid-IRto NearUV Ellipsometric spectra from 0.04 to 5.0 eV were collected and analyzed for a ZnO/AgBRover-coatedwithintrinsica-Si:Handn-typea-Si:Hlayers. ThisZnO/Ag BR sample was over-coated with a-Si:H to determine ε for a-Si:H over the 0.04 to 5.0 eV range as well as identify modifications to the underlying ZnO due to this over-deposition. The structural model for the a-Si:H coated ZnO/Ag BR consisted of a semi-infinite opaque Ag metal layer, a 108 Å ZnO + Ag interfacial layer with fixed thickness from the previous analysis given in Table 3, an average 2751˘5 Å bulk ZnOlayerproducedbythemeandb valuesobtainedfromthesimultaneousfitting of the IRandthenear IR-UVrangespectra,a84˘1Å0.5n-typea-Si:H+0.5ZnO Bruggeman effective edium approximation interfacial layer, a 278˘1 Å a-Si:H n-layer, a 30˘ 1 Å 0.5 intrinsic + 0.5 n-type a-Si:H Bruggeman effective medium approximationinterfacial layer,a3621˘2Åbulkintrinsica-Si:Hlayer,anda29˘1Å surfaceroughnessrepresentedusingBruggemaneffectivemediumapproximationof 0.5 intrinsica-Si:H/0.5voidvolumefractions. Then-layer+ZnOinterface,n-layer bulk layer, and n-layer surface roughness thicknesses are obtained from in situ RTSE measurementsandanalysisprior to intrinsica-Si:Hdeposition. Theintrinsic+n-type a-Si:H interface thickness is set at the same value as the n-layer surface roughness assuming that over-deposited intrinsic a-Si:H fill the voids in the n-layer surface. Parameters describing ε for ZnO and a-Si:H are listed in Table 5. As with the IR extendedanalysisof theZnO/Agsample,acommonparameterizationof ε for the materials over the full spectral range was applied, the bulk layer thicknesses for the ZnOandintrinsica-Si:Hlayerswerefit independentlyforspectracollectedfromeach instrument,andallother layer thicknesseswereeitherfixedfromprioranalysesor 83
back to the  book Photovoltaic Materials and Electronic Devices"
Photovoltaic Materials and Electronic Devices
Title
Photovoltaic Materials and Electronic Devices
Author
Joshua M. Pearce
Editor
MDPI
Location
Basel
Date
2016
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-217-4
Size
17.0 x 24.4 cm
Pages
216
Keywords
Perovskite, Plasmonics, Nanostructured Materials, Anti-Reflection Coatings, Transparent Conductive Oxides, Amorphous Silicon, Dye-sensitized Solar Cells (DSSCs) Materials, Organic Photovoltaic Materials, Solar Energy Materials
Categories
Naturwissenschaften Physik
Technik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Photovoltaic Materials and Electronic Devices