Page - 85 - in Photovoltaic Materials and Electronic Devices
Image of the Page - 85 -
Text of the Page - 85 -
Table 5. Parameters describing ε and structure for a ZnO/Ag BR coated with
n-type and intrinsic a-Si:H. Experimental ellipsometric spectra were collected ex
situusingnear infraredtoultraviolet (0.734to5.0eV)andinfrared(0.04 to0.734eV)
spectral range instruments and fit jointly using least squares regression analysis
withanunweightedestimatorerror function,σ=11ˆ10´3. Parametersdescribing
ε for Ag and the ZnO + Ag interface were fixed from Tables 2 and 3 respectively.
Parameters describing ε for the n-layer were determined from RTSE analysis of
data collected at T = 200˝C, parameterized by a Cody-Lorentz oscillator, and then
parameter values extrapolated to room temperature. The ZnO and intrinsic a-Si:H
bulk layer thicknesseswereallowedtovaryseparately foreachsetofspectra;all
other parameters are common to both analyses. For ZnO, the parameterization
of εconsistedof twoCPPB oscillatorswith allparameters except theamplitudes
fixedtothevalues inTable4, fourLorentzoscillators,and ε8. Fora-Si:Hlayers, the
parameterization of εwas based on a Cody-Lorentz oscillator and ε8. A Sellmeier
oscillatorandthreeGaussianoscillatorswereaddedtotheparameterizationof ε
for intrinsica-Si:H.
Layer Oscillators
i-typea-Si:H
db (Near IRtoUV)=3623˘1Å
db (IR)=3619˘2Å
ds =29.0˘0.3Å i-typea-Si:H Cody-LorentzEg (T&R)=1.780˘0.001;
ε8=1.50˘0.01
Gaussian
A(Unitless) Γ (eV) E0 (eV)
1.732˘0.06 0.013˘0.001 0.079˘0.001
0.28˘0.01 0.010˘0.001 0.249˘0.001
0.41˘0.04 0.016˘0.002 0.106˘0.001
Sellmeier
0.0050˘0.0002eV2 - 0
i- a-Si:H/n-typea-Si:H
Interface=30˘1Å
n-layer
db =278˘1Å
n-typea-Si:H/ZnO
Interface=84Å n-typea-Si:H Cody-Lorentz;ε8=1
A(eV) Γ(eV) E0 (eV) Eg (eV) Ep (eV)
62 2.01 3.99 1.65 1.05
ZnO
db (Near IRtoUV)=2763˘3Å
db (IR)=2738˘5Å ZnO CPPB(µ=0.5)ε8=1.91˘0.02
A Γ (eV) En (eV)
Materials
2016,
9,
128 9
of
23
Table 3. Parameters describing ε and structure for a ZnO film deposited on Ag and the ZnO + Ag
interface formed. Experimental ellipsometric spectra were collected in situ after deposition at room
temperature in the spectral range from 0.734 to 5.0 eV and fit using least squares regression analysis
with an unweighted estimator error function,
= 7 × 10−3. Parameters describing ε for Ag were fixed
from Table 2. For ZnO, the parameterization of ε consisted of two CPPB oscillators, a Sellmeier
oscillator, and ε
. For the ZnO + Ag interface, the parameterization of ε consisted of a Drude
oscillator, a
Lorentz oscillator, and ε
.
Layer Oscillators
ZnO
db = 3060 ± 3 Å
ds = 80 ± 1 Å CPPB (μ = 0.5) ε = 2.27 ± 0.01
A (Unitless)
(eV) En (eV) Ө (degrees)
2.63 ± 0.02 0.199 ± 0.002 3.363 ± 0.001
20.1 ± 0.5
1.41 ± 0.02 3.83 ± 0.08 4.36 ± 0.03 0 (fixed)
Sellmeier
A (eV2)
(eV) En (eV)
0.080 ± 0.002 ‐ 0
ZnO/Ag
Interface = 108
± 11 Å Lorentz ε = 1
A (Unitless)
(eV) E0 (eV)
2.8 ± 0.2 0.57 ± 0.05 2.83 ± 0.01
Drude
(
cm)
(fs)
3.7 ± 0.5 x10−5 2.7 ± 0.3
3.1.2.
Phonon Modes in ZnO
The analysis was extended to the IR by fitting parameters defining ε for ZnO only and fixing
those defining ε for Ag and the ZnO + Ag interface as well as the interface layer thickness. This
analysis approach was chosen because free carrier absorption represented by the Drude feature
dominates the IR response of Ag and the ZnO + Ag interface layers and is already established from
near IR to UV spectral range analysis. A common parameterization of ε for the ZnO was applied for
4.04˘0.05 0.2 9 . 4 ´20.8
1.31˘0.02 3.95 3.94 0
Lor ntz
A(Unitless) Γ (eV) E0 (eV)
3.89˘0.1 0.233˘0.001 0.162˘0.002
82.0˘4.0 0.0030˘0.0003 0.0506˘0.0001
16.4˘0.4 0.039˘0.002 0.085˘0.001
13.0˘3.0 0.004˘0.002 0.047˘0.001
85
Photovoltaic Materials and Electronic Devices
- Title
- Photovoltaic Materials and Electronic Devices
- Author
- Joshua M. Pearce
- Editor
- MDPI
- Location
- Basel
- Date
- 2016
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-217-4
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- Perovskite, Plasmonics, Nanostructured Materials, Anti-Reflection Coatings, Transparent Conductive Oxides, Amorphous Silicon, Dye-sensitized Solar Cells (DSSCs) Materials, Organic Photovoltaic Materials, Solar Energy Materials
- Categories
- Naturwissenschaften Physik
- Technik