Page - 127 - in Photovoltaic Materials and Electronic Devices
Image of the Page - 127 -
Text of the Page - 127 -
ofaconductivityof1/5of thebulkconductivityofcopper torepresentamoderate
qualityconductive ink[30]. Thespecificcontactresistancewasvariedbetween0.0001
and0.1.
ThemodelingwasperformedinComsolandthedataweres furtherprocessed
in Matlab. As input, the single diode description of a solar cell with a maximum
efficiencyof19%wasusedwith the followingequation: J =A–B*(e´C˚V -1),where
J is the current density (A/m2) and V is voltage (V). The constants A, B and C are
given in Table 1. In themodel, voltage between 0 and Voc give the curves presented
in Figure 2a. The constants are chosen in such a way that the maximum efficiency
is19%andthefill factor is80%. Table1alsoshowsthevoltageandcurrentdensity
(VmppandImpp, respectively)atwhichthis19%isobtained.
Table1. Constantsusedfor the IVcurvesonwhichthemodelingwasbased.
Material Voc(V) A B C Vmpp(V) Impp(A/m2)
CIGS 0.7 337.5 1.0ˆ10´6 28.1 0.6 318.5
CdTe 0.9 262.7 1.0ˆ10´6 21.55 0.77 248.1
Perovskite 1.1 215.7 1.5ˆ10´6 17.05 0.94 203.3
4. Conclusions
Theimpactofthefrontcontactdesignandinterconnectionmaterialoptionswere
calculatedfor thinfilmsolarcells. This includesmanyfactorsandvariationof the
TCO sheet resistance, scribing area, cell length, finger dimensions, contact resistance
and illumination power were assessed. Metallic grids have a benefit in terms of
highersolarcell efficiencyandthisalsoenables longercell lengths. However, contact
resistancebetweenthemetalandtheTCOmaterialcanreducethisbenefitsomewhat.
Author Contributions: Author Contributions: Joop van Deelen contributed to the
concept, the modeling, supervised the research work and wrote the manuscript, Yasemin
Tezsevinperformedthecontact resistancemeasurements;andMarcoBarinkcontributedto
themodeling.
Conflictsof Interest: Conflictsof Interest: Theauthorsdeclarenoconflictof interest.
References
1. Jeng,M.J.;Chen,Z.Y.;Xiao,Y.L.;Chang,L.B.;Ao, J.;Sun,Y.;Popko,E.; Jacak,W.;Chow,L.
ImprovingEfficiencyofMulticrystallineSiliconandCIGSSolarCellsbyIncorporating
MetalNanoparticles. Materials2015,8, 6761–6771.
2. Jackson,P.;Hariskos,D.;Wuerz,R.;Kiowski,O.;Bauer,A.;Powalla,M.;Friedlmeier,T.M.
Properties of Cu(In,Ga)Se2 Solar Cells with New Record Efficiencies up to 21.7%.
Phys.StatusSolidiR2015, 9, 28–31.
3. Green,M.A.;Emery,K.;Hishikawa,Y.;Warta,W.;Dunlop,E.D.Solarcellefficiencytables
(version46). Prog.Pothovoltaics. 2015,23, 8025–812.
127
Photovoltaic Materials and Electronic Devices
- Title
- Photovoltaic Materials and Electronic Devices
- Author
- Joshua M. Pearce
- Editor
- MDPI
- Location
- Basel
- Date
- 2016
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-217-4
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- Perovskite, Plasmonics, Nanostructured Materials, Anti-Reflection Coatings, Transparent Conductive Oxides, Amorphous Silicon, Dye-sensitized Solar Cells (DSSCs) Materials, Organic Photovoltaic Materials, Solar Energy Materials
- Categories
- Naturwissenschaften Physik
- Technik