Seite - iii - in Differential Geometrical Theory of Statistics
Bild der Seite - iii -
Text der Seite - iii -
iii
Table of Contents
About the Guest Editors ............................................................................................................................ v
Preface to “Differential Geometrical Theory of Statistics” .................................................................... vii
Chapter 1: Geometric Thermodynamics of Jean-Marie Souriau
Charles-Michel Marle
From Tools in Symplectic and Poisson Geometry to J.-M. Souriau’s Theories of Statistical
Mechanics and Thermodynamics
Reprinted from: Entropy 2016, 18(10), 370; doi: 10.3390/e18100370
http://www.mdpi.com/1099-4300/18/10/370 ........................................................................................... 3
Frédéric Barbaresco
Geometric Theory of Heat from Souriau Lie Groups Thermodynamics and Koszul Hessian
Geometry: Applications in Information Geometry for Exponential Families
Reprinted from: Entropy 2016, 18(11), 386; doi: 10.3390/e18110386
http://www.mdpi.com/1099-4300/18/11/386 ........................................................................................... 49
Géry de Saxcé
Link between Lie Group Statistical Mechanics and Thermodynamics of Continua
Reprinted from: Entropy 2016, 18(7), 254; doi: 10.3390/e18070254
http://www.mdpi.com/1099-4300/18/7/254 ............................................................................................. 121
Chapter 2: Koszul-Vinberg Model of Hessian Information Geometry
Michel Nguiffo Boyom
Foliations-Webs-Hessian Geometry-Information Geometry-Entropy and Cohomology
Reprinted from: Entropy 2016, 18(12), 433; doi: 10.3390/e18120433
http://www.mdpi.com/1099-4300/18/12/433 ........................................................................................... 139
Hideyuki Ishi
Explicit Formula of Koszul–Vinberg Characteristic Functions for a Wide Class of Regular
Convex Cones
Reprinted from: Entropy 2016, 18(11), 383; doi: 10.3390/e18110383
http://www.mdpi.com/1099-4300/18/11/383 ........................................................................................... 235
Chapter 3: Divergence Geometry and Information Geometry
Diaa Al Mohamad and Michel Broniatowski
A Proximal Point Algorithm for Minimum Divergence Estimators with Application to
Mixture Models
Reprinted from: Entropy 2016, 18(8), 277; doi: 10.3390/e18080277
http://www.mdpi.com/1099-4300/18/8/277 ............................................................................................. 253
David C. de Souza, Rui F. Vigelis and Charles C. Cavalcante
Geometry Induced by a Generalization of Rényi Divergence
Reprinted from: Entropy 2016, 18(11), 407; doi: 10.3390/e18110407
http://www.mdpi.com/1099-4300/18/11/407 ........................................................................................... 271