Seite - 6 - in Differential Geometrical Theory of Statistics
Bild der Seite - 6 -
Text der Seite - 6 -
Entropy2016,18, 370
whereÎł : [t0,t1]âN is a smoothcurve inNparametrizedby the time t. Theseequationsexpress
the fact that theaction integral IL(Îł) is stationarywithrespect toanysmooth inïŹnitesimalvariation
ofÎłwithïŹxedend-points (
t0,Îł(t0) )
and (
t1,Îł(t1) )
. This fact is todaycalledHamiltonâs principle of
stationaryaction. Thereader interested inCalculusofVariationsanditsapplications inmechanicsand
physics is referredto thebooks [23â25].
2.4. TheEuler-CartanTheorem
TheLagrangian formalism is theuseofHamiltonâsprincipleof stationaryactionfor thederivation
of the equations of motion of a system. It is widely used in mathematical physics, often with
moregeneralLagrangians involvingmore thanone independentvariableandhigherorderpartial
derivativesofdependentvariables. Forsimplicity Iwill considerhereonly theLagrangiansof (maybe
time-dependent) conservativemechanical systems.
An intrinsic geometric expression of the EulerâLagrange equations, wich does not use local
coordinates,wasobtainedbythegreatFrenchmathematicianĂlieCartan (1869â1951). Letus introduce
theconceptsusedbythestatementof this theorem.
DeïŹnition1. LetNbe the conïŹgurationspaceof amechanical systemand let its tangentbundleTNbe the
space of kinematic states of that system. Weassume that the evolutionwith timeof the state of the system is
governedby theEulerâLagrange equations fora smooth,maybe time-dependentLagrangianL :RĂTNâR.
1. ThecotangentbundleTâNiscalled thephase spaceof the system.
2. ThemapLL :RĂTNâTâN
LL(t,v)=dvertL(t,v) , tâR , vâTN ,
where dvertL(t,v) is the vertical differential of L at (t,v), i.e., the differential at v of the the map
w âL(t,w),withwâÏâ1N (
ÏN(v) )
, is called theLegendremapassociated to L.
3. ThemapEL :RĂTNâRgivenby
EL(t,v)= ăLL(t,v),v âȘâL(t,v) , tâR , vâTN ,
is called the the energy functionassociated to L.
4. The1-formonRĂTN
ÌL=LâLΞNâEL(t,v)dt ,
whereΞN is theLiouville1-formonTâN, is called theEulerâPoincarĂ©1-form.
Theorem1 (Euler-CartanTheorem). AsmoothcurveÎł : [t0,t1]âNparametrizedby the time tâ [t0,t1]
is a solutionof theEulerâLagrange equations if andonly if, for each tâ [t0,t1] thederivativewith respect to t of
themap t â (
t, dÎł(t)
dt )
belongs to thekernel of the2-formdÌL, inotherwords if andonly if
i (
d
dt (
t, dÎł(t)
dt ))
dÌL (
t, dÎł(t)
dt )
=0.
The interestedreaderwillïŹndtheproofof that theoremin[26], (Theorem2.2,Chapter IV,p.262)
or, forhyper-regularLagrangians (anadditionalassumptionwhich in fact, isnotnecessary) in [27],
Chapter IV,Theorem2.1,p. 167.
Remark 1. In his book [14], Jean-Marie Souriau uses a slightly different terminology: for him the
odd-dimensional spaceRĂTN is the evolutionspaceof the system,and the exact2-formdÌL on that space is
theLagrange form.HedeïŹnes that2-forminasettingmoregeneral than thatof theLagrangian formalism.
6
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik