Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 13 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 13 - in Differential Geometrical Theory of Statistics

Bild der Seite - 13 -

Bild der Seite - 13 - in Differential Geometrical Theory of Statistics

Text der Seite - 13 -

Entropy2016,18, 370 Remark8. The2-formdθN isa symplectic formonthe cotangentbundleT∗N,called its canonical symplectic form.WehaveshownthatwhentheLagrangianL ishyper-regular, the equationsofmotioncanbewritten in three equivalentmanners: 1. as theEuler–Lagrange equationsonR×TM, 2. as the equations given by the kernels of the presymplectic formsd̂L ord̂HL which determine the foliations intocurvesof the evolutionspacesR×TMintheLagrangian formalism,orR×T∗Minthe Hamiltonian formalism, 3. as theHamilton equation associated to theHamiltonian HL on the symplecticmanifold (T∗N,dθN), oftencalled thephase spaceof the system. 4.3.1. TheTulczyjewIsomorphisms Around1974, Tulczyjew [34,35] discovered (βN wasprobably known longbefore 1974, but I believe thatαN,muchmorehidden,wasnoticedbyTulczyjewfor thefirst time) tworemarkablevector bundles isomorphismsαN :TT∗N→T∗TNandβN :TT∗N→T∗T∗N. The first one αN is an isomorphism of the bundle (TT∗N,TπN,TN) onto the bundle (T∗TN,πTN,TN), while the second βN is an isomorphismof the bundle (TT∗N,τT∗N,T∗N) onto thebundle (T∗T∗N,πT∗N,T∗N). Thediagrambelowiscommutative. T∗T∗N πT∗N TT∗N βN τT∗N TπN αN T∗TN πTN T∗N πN TN τN N Sincetheyarethetotalspacesofcotangentbundles, themanifoldsT∗TNandT∗T∗Nareendowed with theLiouville1-forms θTN and θT∗N, andwith thecanonical symplectic formsdθTN anddθT∗N, respectively.UsingtheisomorphismsαN andβN,wecanthereforedefineonTT∗N two1-formsα∗NθTN andβ∗NθT∗N, andtwosymplectic2-formsα∗N(dθTN)andβ∗N(dθT∗N). Theveryremarkablepropertyof the isomorphismsαN andβN is that the twosymplectic formssoobtainedonTT∗Nareequal: α∗N(dθTN)= β∗N(dθT∗N) . The 1-forms α∗NθTN and β∗NθT∗N are not equal, their difference is the differential of a smoothfunction. 4.3.2. LagrangianSubmanifolds In viewof applications to implicitHamiltonian systems, let us recall here that a Lagrangian submanifold of a symplectic manifold (M,ω) is a submanifold N whose dimension is half the dimensionofM, onwhichthe forminducedbythesymplectic formω is0. Let L : TN → R and H : T∗N → R be two smooth real valued functions, defined on TN andonT∗N, respectively. ThegraphsdL(TN) anddH(T∗N)of theirdifferentials areLagrangian submanifolds of the symplectic manifolds (T∗TN,dθTN) and (T∗T∗N,dθT∗N). Their pull-backs α−1N ( dL(TN) ) and β−1N ( dH(T∗N) ) by the symplectomorphisms αN and βN are therefore two Lagrangian submanifolds of the manifold TT∗N endowed with the symplectic form α∗N(dθTN), which isequal to thesymplectic formβ∗N(dθT∗N). Thefollowingtheoremenlightenssomeaspectsof therelationshipsbetweentheHamiltonianand theLagrangianformalisms. 13
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics