Seite - 13 - in Differential Geometrical Theory of Statistics
Bild der Seite - 13 -
Text der Seite - 13 -
Entropy2016,18, 370
Remark8. The2-formdθN isa symplectic formonthe cotangentbundleT∗N,called its canonical symplectic
form.WehaveshownthatwhentheLagrangianL ishyper-regular, the equationsofmotioncanbewritten in
three equivalentmanners:
1. as theEuler–Lagrange equationsonR×TM,
2. as the equations given by the kernels of the presymplectic formsd̂L ord̂HL which determine the
foliations intocurvesof the evolutionspacesR×TMintheLagrangian formalism,orR×T∗Minthe
Hamiltonian formalism,
3. as theHamilton equation associated to theHamiltonian HL on the symplecticmanifold (T∗N,dθN),
oftencalled thephase spaceof the system.
4.3.1. TheTulczyjewIsomorphisms
Around1974, Tulczyjew [34,35] discovered (βN wasprobably known longbefore 1974, but I
believe thatαN,muchmorehidden,wasnoticedbyTulczyjewfor thefirst time) tworemarkablevector
bundles isomorphismsαN :TT∗N→T∗TNandβN :TT∗N→T∗T∗N.
The first one αN is an isomorphism of the bundle (TT∗N,TπN,TN) onto the bundle
(T∗TN,πTN,TN), while the second βN is an isomorphismof the bundle (TT∗N,τT∗N,T∗N) onto
thebundle (T∗T∗N,πT∗N,T∗N). Thediagrambelowiscommutative.
T∗T∗N
πT∗N TT∗N
βN
τT∗N TπN
αN T∗TN
πTN
T∗N
πN TN
τN
N
Sincetheyarethetotalspacesofcotangentbundles, themanifoldsT∗TNandT∗T∗Nareendowed
with theLiouville1-forms θTN and θT∗N, andwith thecanonical symplectic formsdθTN anddθT∗N,
respectively.UsingtheisomorphismsαN andβN,wecanthereforedefineonTT∗N two1-formsα∗NθTN
andβ∗NθT∗N, andtwosymplectic2-formsα∗N(dθTN)andβ∗N(dθT∗N). Theveryremarkablepropertyof
the isomorphismsαN andβN is that the twosymplectic formssoobtainedonTT∗Nareequal:
α∗N(dθTN)= β∗N(dθT∗N) .
The 1-forms α∗NθTN and β∗NθT∗N are not equal, their difference is the differential of a
smoothfunction.
4.3.2. LagrangianSubmanifolds
In viewof applications to implicitHamiltonian systems, let us recall here that a Lagrangian
submanifold of a symplectic manifold (M,ω) is a submanifold N whose dimension is half the
dimensionofM, onwhichthe forminducedbythesymplectic formω is0.
Let L : TN → R and H : T∗N → R be two smooth real valued functions, defined on TN
andonT∗N, respectively. ThegraphsdL(TN) anddH(T∗N)of theirdifferentials areLagrangian
submanifolds of the symplectic manifolds (T∗TN,dθTN) and (T∗T∗N,dθT∗N). Their pull-backs
α−1N (
dL(TN) )
and β−1N ( dH(T∗N) )
by the symplectomorphisms αN and βN are therefore two
Lagrangian submanifolds of the manifold TT∗N endowed with the symplectic form α∗N(dθTN),
which isequal to thesymplectic formβ∗N(dθT∗N).
Thefollowingtheoremenlightenssomeaspectsof therelationshipsbetweentheHamiltonianand
theLagrangianformalisms.
13
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik