Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 16 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 16 - in Differential Geometrical Theory of Statistics

Bild der Seite - 16 -

Bild der Seite - 16 - in Differential Geometrical Theory of Statistics

Text der Seite - 16 -

Entropy2016,18, 370 Thisbracket still satifies theproperties stated inDefinition6, thereforedefinesonG∗ aPoissonstructure called its canonicalLie-PoissonstructuremodifiedbyΘ. 4.4.2. PropertiesofPoissonManifolds The interestedreaderwillfindtheproofsof theproperties recalledhere in [8–11]. 1. On aPoissonmanifoldP, the Poisson bracket {f,g} of two smooth functions fand g can be expressedbymeansofasmoothfieldofbivectorsΛ: {f,g}=Λ(df,dg) , f andg∈C∞(P,R) , calledthePoissonbivectorfieldofP. TheconsideredPoissonmanifold isoftendenotedby (P,Λ). ThePoissonbivectorfieldΛ identicallysatisfies [Λ,Λ]=0, the bracket [ , ] in the left hand side being theSchouten-Nijenhuis bracket. That bivector field determinesavectorbundlemorphismΛ :T∗P→TP,definedby Λ(η,ζ)= 〈 ζ,Λ (η) 〉 , whereηandζ∈T∗Pare twocovectorsattachedto thesamepoint inP. Readers interested in the Schouten-Nijenhuis bracketwill find thoroughpresentations of its properties in [40,41]. 2. Let (P,Λ)beaPoissonmanifold.A(maybetime-dependent)vectorfieldonPcanbeassociated toeach (maybe time-dependent) smooth functionH :R×P→R. It is called theHamiltonian vectorfieldassociatedto theHamiltonianH, anddenotedbyXH. Itsexpression is XH(t,x)=Λ (x) ( dHt(x) ) , where dHt(x) = dH(t,x)− ∂H(t,x) ∂t dt is the differential of the function deduced from H by considering tasaparameterwithrespect towhichnodifferentiation ismade. TheHamiltonequationdeterminedbythe (maybetime-dependent)HamiltonianH is dϕ(t) dt =XH( ( t,ϕ(t) ) =Λ (dHt) ( ϕ(t) ) . 3. AnyPoissonmanifold is foliated,byageneralizedfoliationwhose leavesmaynotbeallof the samedimension, into immersedconnectedsymplecticmanifoldscalledthe symplectic leavesof thePoissonmanifold. The value, at anypoint of a Poissonmanifold, of the Poissonbracket of twosmooth functionsonlydependson the restrictionsof these functions to the symplectic leaf through the consideredpoint, and can be calculated as the Poisson bracket of functions definedonthat leaf,with thePoissonstructureassociatedto thesymplectic structureof that leaf. ThispropertywasdiscoveredbyAlanWeinstein, inhisvery thoroughstudyof the local structure ofPoissonmanifolds [42]. 5.HamiltonianSymmetries 5.1. Presymplectic,Symplectic andPoissonMapsandVectorFields LetMbeamanifoldendowedwithsomestructure,whichcanbeeither • a presymplectic structure, determinedbyapresymplectic form, i.e., a 2-formω which is closed (dω=0), 16
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics