Seite - 21 - in Differential Geometrical Theory of Statistics
Bild der Seite - 21 -
Text der Seite - 21 -
Entropy2016,18, 370
TheMarsden-Weinsteinreductionprocedure [43,44]oroneof itsgeneralizations [10] is themethod
mostoftenusedtofacilitate thedeterminationofsolutionsof theequationsofmotion. Inafirst step,
apossiblevalueof themomentummap is chosenand the subset of thephase spaceonwhich the
momentummaptakes thisvalue isdetermined. Ina secondstep, that subset (when it is a smooth
manifold) isquotientedbyits isotropic foliation. Thequotientmanifold isasymplecticmanifoldofa
dimensionsmaller thanthatof theoriginalphasespace,andonehasaneasier tosolveHamiltonian
systemonthat reducedphasespace.
WhenHamiltoniansymmetriesareusedfor thereductionof thedimensionof thephasespace
ofamechanical system, thesymplectic cocycleof theLiegroupof symmetriesaction,orof theLie
algebraofsymmetriesaction, isalmostalways thezero cocycle.
Forexample, if thegroupofsymmetries is thecanonical lift to thecotangentbundleofagroupof
symmetriesof theconfigurationspace,notonly the canonical symplectic form, but theLiouville1-formof
thecotangentbundle itself remains invariantunder theactionof thesymmetrygroup,andthis fact
implies that thesymplecticcohomologyclassof theaction iszero.
5.6.2. Symmetriesof theSpaceofMotions
A completely different way of using symmetries was initiated by Jean-Marie Souriau,
who proposed to consider the symmetries of the manifold of motions of the mechanical system.
Heobservedthat theLagrangianandHamiltonianformalisms, in theirusual formulations, involve the
choiceof aparticular reference frame, inwhichthemotion isdescribed. Thischoicedestroysapartof the
natural symmetries of the system.
Forexample, inclassical (non-relativistic)mechanics, thenatural symmetrygroupofan isolated
mechanical systemmust contain the symmetrygroupof theGalilean space-time, called theGalilean
group. Thisgroupisofdimension10. It containsnotonly thegroupofEuclideandisplacements of space
which isofdimension6andthegroupof time translationswhich isofdimension1, but thegroupof linear
changesofGalileanreference frameswhich isofdimension3.
IfweusetheLagrangian formalismortheHamiltonian formalism, theLagrangianortheHamiltonian
of the systemdepends on the reference frame: it is not invariantwith respect to linear changes ofGalilean
reference frames.
Itmayseemstrange toconsider thesetofallpossiblemotionsofasystem,which isunknownas
longaswehavenotdeterminedall thesepossiblemotions.Onemayask if it is reallyusefulwhenwe
want todeterminenotallpossiblemotions,butonlyonemotionwithprescribed initialdata, since that
motion is justonepointof the (unknown)manifoldofmotion!
Souriau’sanswers to thisobjectionare the following.
1. Weknowthat themanifoldofmotionshasa symplectic structure, andveryoftenmanythingsare
knownabout its symmetryproperties.
2. Inclassical (non-relativistic)mechanics, thereexistsanaturalmathematicalobjectwhichdoesnot
dependon the choice of a particular reference frame (even if thedecriptionsgiven to thatobjectby
differentobserversdependon the reference frameusedby theseobservers): it is the evolution
spaceof thesystem.
Theknowledgeoftheequationswhichgovernthesystem’sevolutionallowsthefullmathematical
descriptionof the evolutionspace, evenwhentheseequationsarenotyet solved.
Moreover, thesymmetrypropertiesof the evolutionspaceare thesameas thoseof themanifold
ofmotions.
Forexample, the evolutionspaceofaclassicalmechanical systemwithconfigurationmanifoldN is
1. in the Lagrangian formalism, the spaceR×TN endowedwith the presymplectic formd̂L,
whosekernel isofdimension1whentheLagrangianL ishyper-regular,
2. intheHamiltonianformalism,thespaceR×T∗Nwiththepresymplecticformd̂H,whosekernel
too isofdimension1.
21
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik