Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 31 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 31 - in Differential Geometrical Theory of Statistics

Bild der Seite - 31 -

Bild der Seite - 31 - in Differential Geometrical Theory of Statistics

Text der Seite - 31 -

Entropy2016,18, 370 to thekinetic energydue to thevelocityof its centreofmass, akinetic energydue to theparticle’s rotationarounditscentreofmass. Thereadercanconsult thebooksbySouriau[14]andMackey[18] where thekinetic theoryofpolyatomicgases isdiscussed. The pressure in the gas, denoted byΠ(b) because the notation P(b) is already used for the partition function, isdue to thechangeof linearmomentumof theparticleswhichoccursatacollision of theparticlewith thewallsof thevessel containing thegas (orwithaprobeusedtomeasure that pressure).Aclassicalargument in thekinetic theoryofgases (see forexample [52,53]) leads to Π(b)= 2 3 E(b) V = N Vb . This formula is thewellknown equationof stateofanidealmonoatomicgasrelatingthenumberof particlesbyunitofvolume, thepressureandthe temperature. Withb= 1 kT , theaboveexpressionsareexactly thoseused inclassical thermodynamics foran idealmonoatomicgas. 6.3.2.Classical IdealMonoatomicGas inaGravityField Letusnowassumethat thegas, contained inacylindricalvesselof sectionÎŁandlengthh,witha verticalaxis, is submittedto theverticalgravityïŹeldof intensitygdirecteddownwards.Wechoose Cartesiancoordinatesx,y,z, thezaxisbeingverticaldirectedupwards, thebottomof thevesselbeing in thehorizontal surface z= 0. TheHamiltonianof a freeparticle ofmassm, position and linear momentumvectors−→x (componentsx,y,z) and−→p (components px, py and pz) is 1 2m (p2x+p 2 y+p 2 z)+mgz . As in theprevioussectionweneglect thepartsof theHamiltonianof thegascorrespondingto collisionsbetweentheparticles,orbetweenaparticleandthewallsof thevessel. TheHamiltonianof thegas is therefore H= N ∑ i=1 ( 1 2mi (p2ix+p 2 iy+p 2 iz)+migzi ) . Calculationssimilar to thoseof theprevioussection leadto P(b)= N ∏ i=1 [ ÎŁ ( 2πmi b )3/2 1−exp(−migbh) migb ] , ρb= 1 P(b) exp [ −b N ∑ i=1 (‖−→pi‖2 2mi +migzi )] . Theexpressionofρb showsthat the2N stochasticvectors −→xi and−→pi stillare independent,andthat foreach i∈{1,. . . ,N}, theprobability lawofeachstochasticvector−→pi is thesameas in theabsence ofgravity, for thesamevalueofb. Eachstochasticvector−→xi isnomoreuniformlydistributedinthe vessel containingthegas: itsprobabilitydensity ishigherat loweraltitudesz, andthisnonuniformity ismore important for theheavierparticles thanfor the lighterones. As in theprevioussection, the formulaegiven inProposition11allowthecalculationofE(b)and S(b).Weobserve thatE(b)nowincludes thepotentialenergyof thegas in thegravityïŹeld, therefore shouldnomorebecalledthe internalenergyof thegas. 6.3.3. RelativisticMonoatomic IdealGas InaGalilean reference frame,weconsider a relativisticpointparticle of restmassm,moving at avelocity−→v . Wedenote by v themodulus of−→v andby c themodulus of thevelocity of light. 31
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics