Seite - 31 - in Differential Geometrical Theory of Statistics
Bild der Seite - 31 -
Text der Seite - 31 -
Entropy2016,18, 370
to thekinetic energydue to thevelocityof its centreofmass, akinetic energydue to theparticleâs
rotationarounditscentreofmass. Thereadercanconsult thebooksbySouriau[14]andMackey[18]
where thekinetic theoryofpolyatomicgases isdiscussed.
The pressure in the gas, denoted byÎ (b) because the notation P(b) is already used for the
partition function, isdue to thechangeof linearmomentumof theparticleswhichoccursatacollision
of theparticlewith thewallsof thevessel containing thegas (orwithaprobeusedtomeasure that
pressure).Aclassicalargument in thekinetic theoryofgases (see forexample [52,53]) leads to
Î (b)= 2
3 E(b)
V = N
Vb .
This formula is thewellknown equationof stateofanidealmonoatomicgasrelatingthenumberof
particlesbyunitofvolume, thepressureandthe temperature.
Withb= 1
kT , theaboveexpressionsareexactly thoseused inclassical thermodynamics foran
idealmonoatomicgas.
6.3.2.Classical IdealMonoatomicGas inaGravityField
Letusnowassumethat thegas, contained inacylindricalvesselof sectionÎŁandlengthh,witha
verticalaxis, is submittedto theverticalgravityïŹeldof intensitygdirecteddownwards.Wechoose
Cartesiancoordinatesx,y,z, thezaxisbeingverticaldirectedupwards, thebottomof thevesselbeing
in thehorizontal surface z= 0. TheHamiltonianof a freeparticle ofmassm, position and linear
momentumvectorsââx (componentsx,y,z) andââp (components px, py and pz) is
1
2m (p2x+p 2
y+p 2
z)+mgz .
As in theprevioussectionweneglect thepartsof theHamiltonianof thegascorrespondingto
collisionsbetweentheparticles,orbetweenaparticleandthewallsof thevessel. TheHamiltonianof
thegas is therefore
H= N
â
i=1 (
1
2mi (p2ix+p 2
iy+p 2
iz)+migzi )
.
Calculationssimilar to thoseof theprevioussection leadto
P(b)= N
â
i=1 [
ÎŁ (
2Ïmi
b )3/2 1âexp(âmigbh)
migb ]
,
Ïb= 1
P(b) exp [
âb N
â
i=1 (âââpiâ2
2mi +migzi )]
.
TheexpressionofÏb showsthat the2N stochasticvectors ââxi andââpi stillare independent,andthat
foreach iâ{1,. . . ,N}, theprobability lawofeachstochasticvectorââpi is thesameas in theabsence
ofgravity, for thesamevalueofb. Eachstochasticvectorââxi isnomoreuniformlydistributedinthe
vessel containingthegas: itsprobabilitydensity ishigherat loweraltitudesz, andthisnonuniformity
ismore important for theheavierparticles thanfor the lighterones.
As in theprevioussection, the formulaegiven inProposition11allowthecalculationofE(b)and
S(b).Weobserve thatE(b)nowincludes thepotentialenergyof thegas in thegravityïŹeld, therefore
shouldnomorebecalledthe internalenergyof thegas.
6.3.3. RelativisticMonoatomic IdealGas
InaGalilean reference frame,weconsider a relativisticpointparticle of restmassm,moving
at avelocityââv . Wedenote by v themodulus ofââv andby c themodulus of thevelocity of light.
31
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik