Seite - 36 - in Differential Geometrical Theory of Statistics
Bild der Seite - 36 -
Text der Seite - 36 -
Entropy2016,18, 370
Proof. Equation (7) follows from log (
1
ρb )
= log (
P(b) )
+ 〈J,b〉, andD(logP(b))=−EJ(b). The
remainingof theproof is thesameas thatofProposition9.
Remark15.
1. The second part of Equation (7), S(b) = log (
P(b) )−〈D(logP(b)),b〉, expresses the fact that the
functions log (
P(b) ) and−S(b)areLegendre transformsof eachother: theyare linkedby the samerelation
as the relationwhich linksa smoothLagrangianLandtheassociated energyEL.
2. TheLiouvillemeasureλω remains invariantunder theHamiltonianactionΦ, since the symplectic formω
itself remains invariantunder that action.However,wehavenota full analogueofProposition10because
themomentummap J doesnot remain invariantunder theactionΦ.Weonlyhave thepartial anologue
statedbelow.
3. Legendre transformswere used byMassieu in thermodynamics in his very earlyworks [55,56], more
systematically presented in [57], in which he introduced his characteristic functions (today called
thermodynamicpotentials) allowingthedeterminationofall the thermodynamic functionsof aphysical
systembypartial derivationsof a suitably chosencharacteristic function. Foramodernpresentationof that
subject the reader is referred to [58,59],Chapter5,pp.131–152.
Proposition 13. Let b ∈ G be such that the integrals defining P(b) and EJ(b) inDefinition 19 converge.
ThegeneralizedGibbs state associated tob remains invariantunder the restrictionof theHamiltonianactionΦ
to theone-parameter subgroupofGgeneratedbyb, {
exp(τb) ∣∣τ∈R}.
Proof. Theorbitsof theactiononMof thesubgroup {
exp(τb) ∣∣τ∈R}ofGare the integralcurves
of theHamiltonianvectorfieldwhoseHamiltonian is 〈J,b〉,whichof course is constantoneachof
thesecurves. Therefore theproofofProposition10 isvalid for that subgroup.
7.2.GeneralizedThermodynamicFunctions
AssumptionsMadein thisSection
Notationsandconventionsbeingthesameas inSection7.1, letΩbethe largestopensubsetof the
LiealgebraGofG containingallb∈G satisfyingthe followingproperties:
• the functionsdefinedonM,withvalues, respectively, inRandinthedualG∗ofG,
z → exp ( −〈J(z),b〉) and z → J(z)exp(−〈J(z),b〉)
are integrableonMwithrespect to theLiouvillemeasureλω;
• moreover their integralsaredifferentiablewithrespect tob, theirdifferentialsarecontinuousand
canbecalculatedbydifferentiationunder thesign ∫
M.
It isassumedinthissectionthat theconsideredHamiltonianactionΦof theLiegroupGonthe
symplecticmanifold (M,ω) and itsmomentummap J are such that theopensubsetΩofG is not
empty. Thiscondition isnotalwayssatisfiedwhen (M,ω) isacotangentbundle,butof course it is
satisfiedwhenit isacompactmanifold.
Proposition14. LetΦ : G×M→MbeaHamiltonianaction of aLie groupGona symplecticmanifold
(M,ω)satisfyingtheassumptionsindicatedinSection7.2. ThepartitionfunctionPassociatedtothemomentum
map J and themean value EJ of J for generalizedGibbs statesDefinition 19 are defined and continuously
differentiable on the open subsetΩ ofG. For each b∈Ω, the differentials at b of the functions P and logP
(whichare linearmapsdefinedonG,withvalues inR, inotherwords elementsofG∗) aregivenby
DP(b)=−P(b)EJ(b) , D(logP)(b)=−EJ(b) .
36
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik