Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 43 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 43 - in Differential Geometrical Theory of Statistics

Bild der Seite - 43 -

Bild der Seite - 43 - in Differential Geometrical Theory of Statistics

Text der Seite - 43 -

Entropy2016,18, 370 For each time t ∈ R, the action of A(τ) = A ( t ε ) maps the fixed reference frame (O,−→ex ,−→ey ,−→ez) onto another affineEuclidean reference frame ( O(t),−→ex(t),−→ey(t),−→ez(t) ) ,whichwecall themoving reference frame. Thevelocity and the acceleration of the relativemotionof themoving reference framewithrespect to thefixedreference frameisgiven,at time t=0,by the fundamentalvectorfield associatedto theelementbof theLiealgebraGof theGalileangroup:wesee thateachpoint inspace hasamotioncomposedofarotationaroundtheaxis throughOparallel to−→ω , atanangularvelocity ‖−→ω‖ ε , andsimultaneouslyauniformlyacceleratedmotionof translationatan initialvelocity −→ δ ε and acceleration −→ β ε . At time t, thevelocityandaccelerationof themovingreference framewithrespect to its instantaneouspositionat that timecanbedescribedinasimilarmanner,but insteadofO,−→ω ,−→β and −→ δ wemustuse thecorrespondingtransformedelementsbytheactionofA(τ)=A ( t ε ) . 7.3.4.AGasContainedinaMovingVessel Weconsideramechanical systemmadebyagasofNpointparticles, indexedby i∈{1,2, . . . ,N}, contained inavesselwithrigid,undeformablewalls,whosemotion inspace isgivenbytheaction of the one-parameter subgroupG1 of theGalilean groupmadeby the A ( t ε ) , with t ∈R, above described.Wedenotebymi, −→ri (t)and−→vi(t) themass,positionvectorandvelocityvector, respectively, of the i-thparticle at time t. Since themotionof thevessel containing thegas ispreciselygivenby theactionofG1, theboundaryconditions imposedto thesystemare invariantbythataction,which leaves invariant the evolution spaceof themechanical system, isHamiltonianandprojects ontoa Hamiltonian actionofG1 on the symplecticmanifold ofmotions of the system. We can therefore consider thegeneralizedGibbsstatesof thesystem,asdiscussed inSection7.1.Wemustevaluate the momentummap Jof thatactionanditscouplingwith theelementb∈G. As inSection6.3.1wewill neglect, for thatevaluation, thecontributionsof thecollisionsof theparticlesbetweenthemselvesand with thewallsof thevessel. Themomentummapcanthereforebeevaluatedas ifallparticleswere free,anditscoupling 〈J,b〉withb is thesum∑Ni=1〈Ji,b〉of themomentummap Jiof the i-thparticle, consideredas free,withb.Wehave 〈 Ji( −→ri ,t,−→vi ,mi),b 〉 =mi (−→ω ·(−→ri ×−→vi)−(−→ri − t−→vi) ·−→β +−→vi ·−→δ − 12‖−→vi‖2ε) . FollowingSouriau[14],Chapter IV,pp. 299–303,weobserve that 〈Ji,b〉 is invariantbytheaction ofG1.Wecanthereforedefine −→ri0, t0 and−→vi0 bysetting⎛⎜⎝ −→ri0 −→vi0 t0 1 1 0 ⎞⎟⎠= exp(−t ε b )⎛⎜⎝ −→ri −→vi t 1 1 0 ⎞⎟⎠ andwrite 〈 Ji( −→ri ,t,−→vi ,mi),b 〉 = 〈 Ji( −→ri0,t0,−→vi0,mi),b 〉 . Thevectors−→ri0 and−→vi0 havea clearphysicalmeaning: theyare thevectors−→ri and−→vi as seen byanobservermovingwiththemovingaffineEuclideanreference frame ( O(t),−→ex(t),−→ey(t),−→ez(t) ) . Moreover,ascanbeeasilyverified, t0=0ofcourse.Wethereforehave 〈 Ji( −→ri ,t,−→vi ,mi),b 〉 =mi (−→ω ·(−→ri0×−→vi0)−−→ri0 ·−→β +−→vi0 ·−→δ − 12‖−→vi0‖2ε) =mi (−→vi0 ·(−→ω×−→ri0+−→δ )−−→ri0 ·−→β − 12‖−→vi0‖2ε) 43
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics