Seite - 45 - in Differential Geometrical Theory of Statistics
Bild der Seite - 45 -
Text der Seite - 45 -
Entropy2016,18, 370
Remark18.
1. Thephysicalmeaningof theparameter Δwhichappears in the expressionof thematrixb is clearlyapparent
inexpression (10)of ăJi,bă:
Δ=â 1
kT ,
Tbeing theabsolute temperatureandk theBoltzmannâs constant.
2. The same expression (10) shows that the relativemotionof thegaswith respect to themovingvessel in
which it is contained, seen by an observer linked to thatmoving vessel, is described by aHamiltonian
system inwhich the kinetic andpotential energies of the i-th particle are, respectively, 1
2mi âââpi0â2 and
mifi( ââri0). This result canbe obtained inanotherway: byderiving theHamiltonianwhichgoverns the
relativemotionof amechanical systemwith respect toamoving frame, asusedby Jacobi [63] todetermine
the famous Jacobi integral of the restrictedcircular three-bodyproblem(inwhich twobigplanetsmoveon
concentric circular orbits aroundtheir commoncenter ofmass, anda thirdplanet ofnegligiblemassmoves
in thegravitationalïŹeld createdby the twobigplanets).
3. ThegeneralizedGibbs state of the system imposes to thevariousparts of the system, i.e., to thevarious
particles, to be at the same temperature T =â 1
kΔ and to be statistically at rest in the samemoving
reference frame.
7.3.5. ThreeExamples
1. LetussetââÏ =0andââÎČ =0. Themotionof themovingvessel containingthegas (withrespect
to thesocalledïŹxedreference frame) isa translationataconstantvelocity ââ
ÎŽ
Δ . The function fi( ââri0)
is thena constant. In themoving reference frame,which is an inertial frame,we recover the
thermodynamicequilibriumstateofamonoatomicgasdiscussed inSection6.3.1.
2. Let us set nowââÏ = 0 andââÎŽ = 0. The motion of the moving vessel containing the gas
(with respect to the socalledïŹxed reference frame) isnowanuniformlyaccelerated translation,
withacceleration ââ
ÎČ
Δ . The function fi( ââri0)nowis
fi( ââri0)=ââri0 · ââ
ÎČ
Δ .
In the moving reference frame, which is no more inertial, we recover the thermodynamic
equilibriumstateofamonoatomicgas inagravityïŹeldââg =â ââ
ÎČ
Δ discussed inSection6.3.2.
3. LetusnowsetââÏ =Ïââez ,ââÎČ = 0andââÎŽ = 0. Themotionof themovingvessel containing the
gas (withrespect to thesocalledïŹxedreference frame) isnowarotationaroundthecoordinatez
axisataconstantangularvelocity Ï
Δ . The function fi( ââri0) isnow
fi( ââri0)=âÏ 2
2Δ2 âââez Ăââri0â2 .
The lengthÎ= âââez Ăââri,0â is thedistancebetween the i-thparticle and theaxisof rotationof
themoving frame (the coordinate zaxis). Moreover,wehave seen that Δ= â1
kT . Therefore in
thegeneralizedGibbs state, theprobabilitydensity Ïi(b)ofpresenceof the i-thparticle in its
symplecticmanifoldofmotionMi,Ïi,withrespect to theLiouvillemeasureλÏi, is
Ïi(b)= 1
Pi(b) exp (âăJi,bă)=Constant ·exp(â 12mikT âââpi0â2+ mi2kT (Ï
Δ )2 Î2 )
.
45
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik