Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 45 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 45 - in Differential Geometrical Theory of Statistics

Bild der Seite - 45 -

Bild der Seite - 45 - in Differential Geometrical Theory of Statistics

Text der Seite - 45 -

Entropy2016,18, 370 Remark18. 1. Thephysicalmeaningof theparameter Δwhichappears in the expressionof thematrixb is clearlyapparent inexpression (10)of 〈Ji,b〉: Δ=− 1 kT , Tbeing theabsolute temperatureandk theBoltzmann’s constant. 2. The same expression (10) shows that the relativemotionof thegaswith respect to themovingvessel in which it is contained, seen by an observer linked to thatmoving vessel, is described by aHamiltonian system inwhich the kinetic andpotential energies of the i-th particle are, respectively, 1 2mi ‖−→pi0‖2 and mifi( −→ri0). This result canbe obtained inanotherway: byderiving theHamiltonianwhichgoverns the relativemotionof amechanical systemwith respect toamoving frame, asusedby Jacobi [63] todetermine the famous Jacobi integral of the restrictedcircular three-bodyproblem(inwhich twobigplanetsmoveon concentric circular orbits aroundtheir commoncenter ofmass, anda thirdplanet ofnegligiblemassmoves in thegravitationalïŹeld createdby the twobigplanets). 3. ThegeneralizedGibbs state of the system imposes to thevariousparts of the system, i.e., to thevarious particles, to be at the same temperature T =− 1 kΔ and to be statistically at rest in the samemoving reference frame. 7.3.5. ThreeExamples 1. Letusset−→ω =0and−→ÎČ =0. Themotionof themovingvessel containingthegas (withrespect to thesocalledïŹxedreference frame) isa translationataconstantvelocity −→ ÎŽ Δ . The function fi( −→ri0) is thena constant. In themoving reference frame,which is an inertial frame,we recover the thermodynamicequilibriumstateofamonoatomicgasdiscussed inSection6.3.1. 2. Let us set now−→ω = 0 and−→ή = 0. The motion of the moving vessel containing the gas (with respect to the socalledïŹxed reference frame) isnowanuniformlyaccelerated translation, withacceleration −→ ÎČ Î” . The function fi( −→ri0)nowis fi( −→ri0)=−→ri0 · −→ ÎČ Î” . In the moving reference frame, which is no more inertial, we recover the thermodynamic equilibriumstateofamonoatomicgas inagravityïŹeld−→g =− −→ ÎČ Î” discussed inSection6.3.2. 3. Letusnowset−→ω =ω−→ez ,−→ÎČ = 0and−→ή = 0. Themotionof themovingvessel containing the gas (withrespect to thesocalledïŹxedreference frame) isnowarotationaroundthecoordinatez axisataconstantangularvelocity ω Δ . The function fi( −→ri0) isnow fi( −→ri0)=−ω 2 2Δ2 ‖−→ez ×−→ri0‖2 . The lengthΔ= ‖−→ez ×−→ri,0‖ is thedistancebetween the i-thparticle and theaxisof rotationof themoving frame (the coordinate zaxis). Moreover,wehave seen that Δ= −1 kT . Therefore in thegeneralizedGibbs state, theprobabilitydensity ρi(b)ofpresenceof the i-thparticle in its symplecticmanifoldofmotionMi,ωi,withrespect to theLiouvillemeasureλωi, is ρi(b)= 1 Pi(b) exp (−〈Ji,b〉)=Constant ·exp(− 12mikT ‖−→pi0‖2+ mi2kT (ω Δ )2 Δ2 ) . 45
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics