Seite - 47 - in Differential Geometrical Theory of Statistics
Bild der Seite - 47 -
Text der Seite - 47 -
Entropy2016,18, 370
19. Newton, I.PhilosophiaNaturalisPrincipiaMathematica;Translated inFrenchbyÉmilieduChastelet (1756);
London,UK,1687. (InFrench)
20. Lagrange, J.L.MécaniqueAnalytique, 1st ed.; LaveuvedeSaint-Pierre: Paris, France, 1808; reprintedby
JacquesGabay: Paris,France,1989. (InFrench)
21. Hamilton,W.R.On ageneralmethod inDynamics. InSirWilliamRowanHamiltonMathematicalWorks,
VolumeII;CambridgeUniversityPress:Cambridge,UK,1940;pp.247–308.
22. Hamilton,W.R.SecondessayonageneralmethodinDynamics. InSirWilliamRowanHamiltonMathematical
Works,VolumeII;CambridgeUniversityPress:Cambridge,UK,1940;pp.95–144.
23. Bérest,P.CalculdesVariationsApplicationà laMécaniqueet à laPhysique;Ellipses/ÉditionsMarketing: Paris,
France,1997. (InFrench)
24. Bourguignon, J.-P.CalculVariationnel;Éditionsde l’ÉcolePolytechnique: Paris,France,1991. (InFrench)
25. Lanczos, C.S. The Variational Principles of Mechanics, 4th ed.; Reprinted by Dover, New York, 1970;
UniversityofTorontoPress: Toronto,ON,Canada,1970.
26. Malliavin,P.GéométrieDifférentielle Intrinsèque;ÉditionsHermann: Paris,France,1972. (InFrench)
27. Sternberg,S.LecturesonDifferentialGeometry;Prentice-Hall:UpperSaddleRiver,NJ,USA,1964.
28. Kosmann-Schwarzbach,Y.TheNoetherTheorems; Springer: Berlin/Heidelberg,Germany,2011.
29. Poincaré,H.Suruneformenouvelledeséquationsde laMéanique.C.R.Acad.Sci. 1901,7, 369–371.
30. Marle,C.-M.OnHenriPoincaré’snote“Suruneformenouvelledeséquationsde laMécanique”. J.Geom.
SymmetryPhys. 2013,29, 1–38.
31. Barbaresco,F.Symplectic structureof informationgeometry: Fishermetricandeuler-poincaréequationof
souriau lie group thermodynamics. In Geometric Science of Information: Second International Conference,
GSI 2015, Proceedings; Nielsen, F., Barbaresco, F., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg,Germany,2015;Volume9389,pp. 529–540. (InFrench)
32. Lagrange, J.-L.Mémoire sur laThéorieGénéralede laVariationdesConstantesArbitrairesDansTous lesProblèmes
deMécanique; Lu le13mars1809à l’InstitutdeFrance;DansŒuvresdeLagrange;Gauthier-Villars: Paris,
France,1877;VolumeVI,pp. 771–805. (InFrench)
33. Lagrange, J.-L.SecondMémoire sur laThéorie de laVariationdesConstantesArbitrairesDans lesProblèmesde
Mécanique;Gauthier-Villars: Paris,France,1877;VolumeVI,pp. 809–816. (InFrench)
34. Tulczyjew,W.M.Hamiltoniansystems,LagrangiansystemsandtheLegendre transformation.Symp.Math.
1974,14, 247–258.
35. Tulczyjew,W.M.GeometricFormulationsofPhysicalTheories;MonographsandTextbooks inPhysicalScience;
Bibliopolis:Napoli, Italy,1989.
36. Lichnerowicz,A.LesvariétésdePoissonet leursalgèbresdeLieassociées. J.Differ. Geom. 1977,12, 253–300.
(InFrench)
37. Lichnerowicz,A.Lesvariétésde Jacobi et leurs algèbresdeLie associées. J.Math. PuresAppl. 1979, 57,
453–488. (InFrench)
38. Kirillov,A. Local liealgebras.Russ.Math. Surv. 1976,31, 55–75.
39. Poisson, S.D.Sur lavariationdesconstantesarbitrairesdans lesquestionsdemécanique. Mémoire lu le
16octobre1809à l’InstitutdeFrance. JournaldeL’ÉcolePolytechniquequinzièmecahier, tomeVIII, 266–344.
(InFrench)
40. Koszul, J.-L.CrochetdeSchouten-Nijenhuiset cohomologie. InÉ.Cartanet lesMathématiquesD’aujourd’hui;
Astérisque,numérohorssérie,SociétéMathématiquedeFrance: Paris,France,1985;pp. 257–271. (InFrench)
41. Marle,C.-M.CalculusonLiealgebroids,LiegroupoidsandPoissonmanifolds.DissertationesMathematicae
457, Institute ofMathematics,PolishAcademyofSciences (Warszawa). 2008, arXiv:0806.0919.
42. Weinstein,A.The local structureofPoissonmanifolds. J.Differ. Geom. 1983,18, 523–557.
43. Marsden, J.E.;Weinstein,A.Reductionofsymplecticmanifoldswithsymmetry.Rep.Math. Phys. 1974,5,
121–130.
44. Meyer,K.Symmetriesandintegrals inmechanics. InDynamicalSystems;Peixoto,M.,Ed.;AcademicPress,
NewYork,NY,USA,1973;pp.259–273.
45. DeSaxcé,G.;Vallée,C.GalileanMechanics andThermodynamicsofContinua; JohnWiley&Sons:Hoboken,NJ,
USA,2016.
46. Boltzmann,L.E.Leçonssur laThéoriedesgaz.Availableonline: http://iris.univ-lille1.fr/handle/1908/1523
(accessedon11October2016). (InFrench)
47
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik