Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 47 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 47 - in Differential Geometrical Theory of Statistics

Bild der Seite - 47 -

Bild der Seite - 47 - in Differential Geometrical Theory of Statistics

Text der Seite - 47 -

Entropy2016,18, 370 19. Newton, I.PhilosophiaNaturalisPrincipiaMathematica;Translated inFrenchbyÉmilieduChastelet (1756); London,UK,1687. (InFrench) 20. Lagrange, J.L.MécaniqueAnalytique, 1st ed.; LaveuvedeSaint-Pierre: Paris, France, 1808; reprintedby JacquesGabay: Paris,France,1989. (InFrench) 21. Hamilton,W.R.On ageneralmethod inDynamics. InSirWilliamRowanHamiltonMathematicalWorks, VolumeII;CambridgeUniversityPress:Cambridge,UK,1940;pp.247–308. 22. Hamilton,W.R.SecondessayonageneralmethodinDynamics. InSirWilliamRowanHamiltonMathematical Works,VolumeII;CambridgeUniversityPress:Cambridge,UK,1940;pp.95–144. 23. Bérest,P.CalculdesVariationsApplicationà laMécaniqueet à laPhysique;Ellipses/ÉditionsMarketing: Paris, France,1997. (InFrench) 24. Bourguignon, J.-P.CalculVariationnel;Éditionsde l’ÉcolePolytechnique: Paris,France,1991. (InFrench) 25. Lanczos, C.S. The Variational Principles of Mechanics, 4th ed.; Reprinted by Dover, New York, 1970; UniversityofTorontoPress: Toronto,ON,Canada,1970. 26. Malliavin,P.GéométrieDifférentielle Intrinsèque;ÉditionsHermann: Paris,France,1972. (InFrench) 27. Sternberg,S.LecturesonDifferentialGeometry;Prentice-Hall:UpperSaddleRiver,NJ,USA,1964. 28. Kosmann-Schwarzbach,Y.TheNoetherTheorems; Springer: Berlin/Heidelberg,Germany,2011. 29. Poincaré,H.Suruneformenouvelledeséquationsde laMéanique.C.R.Acad.Sci. 1901,7, 369–371. 30. Marle,C.-M.OnHenriPoincaré’snote“Suruneformenouvelledeséquationsde laMécanique”. J.Geom. SymmetryPhys. 2013,29, 1–38. 31. Barbaresco,F.Symplectic structureof informationgeometry: Fishermetricandeuler-poincaréequationof souriau lie group thermodynamics. In Geometric Science of Information: Second International Conference, GSI 2015, Proceedings; Nielsen, F., Barbaresco, F., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,Germany,2015;Volume9389,pp. 529–540. (InFrench) 32. Lagrange, J.-L.Mémoire sur laThéorieGénéralede laVariationdesConstantesArbitrairesDansTous lesProblèmes deMécanique; Lu le13mars1809à l’InstitutdeFrance;DansŒuvresdeLagrange;Gauthier-Villars: Paris, France,1877;VolumeVI,pp. 771–805. (InFrench) 33. Lagrange, J.-L.SecondMémoire sur laThéorie de laVariationdesConstantesArbitrairesDans lesProblèmesde Mécanique;Gauthier-Villars: Paris,France,1877;VolumeVI,pp. 809–816. (InFrench) 34. Tulczyjew,W.M.Hamiltoniansystems,LagrangiansystemsandtheLegendre transformation.Symp.Math. 1974,14, 247–258. 35. Tulczyjew,W.M.GeometricFormulationsofPhysicalTheories;MonographsandTextbooks inPhysicalScience; Bibliopolis:Napoli, Italy,1989. 36. Lichnerowicz,A.LesvariétésdePoissonet leursalgèbresdeLieassociées. J.Differ. Geom. 1977,12, 253–300. (InFrench) 37. Lichnerowicz,A.Lesvariétésde Jacobi et leurs algèbresdeLie associées. J.Math. PuresAppl. 1979, 57, 453–488. (InFrench) 38. Kirillov,A. Local liealgebras.Russ.Math. Surv. 1976,31, 55–75. 39. Poisson, S.D.Sur lavariationdesconstantesarbitrairesdans lesquestionsdemécanique. Mémoire lu le 16octobre1809à l’InstitutdeFrance. JournaldeL’ÉcolePolytechniquequinzièmecahier, tomeVIII, 266–344. (InFrench) 40. Koszul, J.-L.CrochetdeSchouten-Nijenhuiset cohomologie. InÉ.Cartanet lesMathématiquesD’aujourd’hui; Astérisque,numérohorssérie,SociétéMathématiquedeFrance: Paris,France,1985;pp. 257–271. (InFrench) 41. Marle,C.-M.CalculusonLiealgebroids,LiegroupoidsandPoissonmanifolds.DissertationesMathematicae 457, Institute ofMathematics,PolishAcademyofSciences (Warszawa). 2008, arXiv:0806.0919. 42. Weinstein,A.The local structureofPoissonmanifolds. J.Differ. Geom. 1983,18, 523–557. 43. Marsden, J.E.;Weinstein,A.Reductionofsymplecticmanifoldswithsymmetry.Rep.Math. Phys. 1974,5, 121–130. 44. Meyer,K.Symmetriesandintegrals inmechanics. InDynamicalSystems;Peixoto,M.,Ed.;AcademicPress, NewYork,NY,USA,1973;pp.259–273. 45. DeSaxcé,G.;Vallée,C.GalileanMechanics andThermodynamicsofContinua; JohnWiley&Sons:Hoboken,NJ, USA,2016. 46. Boltzmann,L.E.Leçonssur laThéoriedesgaz.Availableonline: http://iris.univ-lille1.fr/handle/1908/1523 (accessedon11October2016). (InFrench) 47
zurĂĽck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics