Seite - 55 - in Differential Geometrical Theory of Statistics
Bild der Seite - 55 -
Text der Seite - 55 -
Entropy2016,18, 386
groupcouldberepresented inamatrix formby(withA rotation,b theboost, cspace translationand
e timetranslation):⎡⎢⎣
x′t
1 ⎤⎥⎦= ⎡⎢⎣ A b
c0
1 e
0 0 1 ⎤⎥⎦
GALILEOGROUP ⎡⎢⎣ xt
1 ⎤⎥⎦with ⎧⎪⎨⎪⎩ A∈SO(3)
b,c∈R3
e∈R , LieAlgebra ⎡⎢⎣ ω η
γ0
0 ε
0 0 0 ⎤⎥⎦with ⎧⎪⎨⎪⎩ ω∈ so(3)
η,γ∈R3
ε∈R+ (18)
Souriau associated to thismomentmap, the notion of symplectic cohomology, linked to the
fact that such amoment is defined up to an additive constant that brings into play an algebraic
mechanism(calledcohomology). Souriauprovedthat themomentmapisaconstantof themotion,
andprovidedgeometricgeneralizationofEmmyNoether invariant theorem(invariantsofE.Noether
theoremare thecomponentsof themomentmap). For instance,Souriaugaveanontologicaldefinition
ofmass in classicalmechanics as themeasure of the symplectic cohomology of the action of the
Galileogroup(themass isno longeranarbitraryvariablebutacharacteristicof the space). This is
no longer true forPoincarégroupinrelativisticmechanics,where thesymplecticcohomologyisnull,
explaining the lackof conservationofmass in relativity. All thedetailsof classicalmechanics thus
appearasgeometricnecessities, asontologicalelements. Souriauhasalsoobservedthat thesymplectic
structurehas theproperty tobeable tobereconstructedfromitssymmetriesalone, througha2-form
(calledKirillov–Kostant–Souriau form)definedoncoadjointorbits. Souriau said that thedifferent
versionsofmechanical sciencecanbeclassifiedbythegeometry thateach implies forspaceandtime;
geometry isdeterminedbythecovarianceofgrouptheory. Thus,Newtonianmechanics iscovariant
by thegroupofGalileo, the relativityby thegroupofPoincaré;General relativityby the“smooth”
group(thegroupofdiffeomorphismsofspace-time).However,Souriauadded“However, there are some
statementsofmechanicswhose covariancebelongs toa fourthgrouprarely considered: theaffinegroup, agroup
showninthe followingdiagramfor inclusion.Howis itpossible thataunitarypointofview(whichwouldbe
necessarilya true thermodynamics), hasnotyet come tocrownthepicture?Mystery...” [26].SeeFigure1.
Figure 1. Souriau Scheme about mysterious “affine group” of a true thermodynamics between
Galileo group of classicalmechanics, Poincaré group of relativisticmechanics and Smooth group
ofgeneral relativity.
As early as 1966, Souriau applied his theory to statistical mechanics, developed it in the
Chapter IV of his book “Structure of Dynamical Systems” [11], and elaborated what he called
a “Lie group thermodynamics” [10,11,27–37]. Using Lagrange’s viewpoint, in Souriau statistical
mechanics, a statistical state is a probabilitymeasure on themanifold ofmotions (andno longer
inphase space [38]). Souriauobserved thatGibbsequilibrium[39] isnot covariantwith respect to
dynamicgroupsofPhysics. Tosolve thisbrakingofsymmetry,Souriau introducedanew“geometric
theoryofheat”wheretheequilibriumstatesareindexedbyaparameterβwithvaluesintheLiealgebra
of thegroup,generalizing theGibbsequilibriumstates,whereβplays theroleofageometric (Planck)
temperature. The invariancewith respect to thegroup, and the fact that the entropy s is a convex
functionof thisgeometric temperatureβ, imposesverystrict,universalconditions (e.g., thereexists
necessarily a critical temperature beyondwhichno equilibriumcanexist). Souriauobserved that
thegroupof time translationsof theclassical thermodynamics [40,41] isnotanormal subgroupof
theGalileigroup,proving that if adynamical systemisconservative inan inertial reference frame,
itneednotbeconservative inanother. Basedonthis fact,Souriaugeneralizedthe formulationof the
Gibbsprinciple tobecomecompatiblewithGalileorelativity inclassicalmechanicsandwithPoincaré
55
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik