Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 58 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 58 - in Differential Geometrical Theory of Statistics

Bild der Seite - 58 -

Bild der Seite - 58 - in Differential Geometrical Theory of Statistics

Text der Seite - 58 -

Entropy2016,18, 386 of Space-Time. For eachpointX, there is a “temperature vector” ÎČ(X), such it is an inïŹnitesimal conformal transformof themetricof theuniversegij. Conservationequationscanthenbededuced for components of impulsion-energy tensor Tij and entropy ïŹ‚ux Sj with ∂ˆiTij = 0 and ∂iSj = 0. Temperatureandmetricarerelatedbythe followingequations:⎧⎚⎩ ∂ˆiÎČj+ ∂ˆjÎČi=λgij∂iÎČj+∂jÎČi−2ΓkijÎČk=λgij with { ∂ˆi. : covariantderivative ÎČj : componentofTemperaturevector λ=0⇒ KillingEquation (22) Leon Brillouin made the link between Boltzmann entropy and Negentropie of information theory [68–71], but before Jean-Marie Souriau, only Constantin CarathĂ©odory and Pierre Duhem[72–75] initiatedïŹrst theoreticalworks togeneralize thermodynamics. After threeyearsas lectureratLilleuniversity,Duhempublishedapaper in theofïŹcial revue of theEcoleNormaleSupĂ©rieure, in1891, “Ongeneral equationsof thermodynamics” [72] (Sur les Ă©quationsgĂ©nĂ©ralesde laThermodynamique) inAnnalesScientiïŹquesde l’EcoleNormaleSupĂ©rieure. Duhemgeneralized theconceptof“virtualwork”under theactionof“externalactions”bytaking into accountbothmechanicalandthermalactions. In1894, thedesignofageneralizedmechanicsbased onthermodynamicswas furtherdeveloped: ordinarymechanicshadalreadybecome“aparticular caseofamoregeneral science”.Duhemwrites“Wemadedynamicsa special case of thermodynamics, a science that embraces commonprinciples inall changesof statebodies, changesofplacesaswell as changes in physical qualities” (Nousavons fait de ladynamiqueuncasparticulierde la thermodynamique,uneSciencequi embrassedansdesprincipes communs tous les changementsd’étatdes corps, aussi bien les changementsde lieu que les changementsdequalitĂ©sphysiques). Intheequationsofhisgeneralizedmechanics-thermodynamics, somenewtermshadtobe introduced, inorder toaccount for the intrinsicviscosityandfrictionof the system.AsobservedbyStefanoBordoni,Duhemaimedatwideningthescopeofphysics: thenewphysics couldnotconfineitself to“localmotion”buthadtodescribewhatDuhemqualified“motionsofmodification”. If Boltzmann had tried to proceed from “localmotion” to attain the explanation ofmore complex transformations,Duhemwas trying toproceed fromgeneral lawsconcerninggeneral transformation inorder to reach“localmotion”asasimplifiedspecific case. Four scientistswere creditedbyDuhem with having carried out “themost important researches on that subject”: Massieu hadmanaged to derive thermodynamics froma “characteristic function and its partial derivatives”; Gibbs had shownthatMassieu’s functions“couldplay theroleofpotentials in thedeterminationof thestatesof equilibrium”inagivensystem;vonHelmholtzhadput forward“similar ideas”;vonOettingenhad given“anexpositionof thermodynamicsof remarkablegenerality”basedongeneraldualityconcept in“Die thermodynamischenBeziehungenantithetischentwickelt”publishedatSt.Petersburg in1885. Duhemtookintoaccountasystemwhoseelementshadthesametemperatureandwhere thestateof thesystemcouldbecompletelyspeciïŹedbygivingits temperatureandnother independentquantities. He then introduced some “external forces”, andheld the system in equilibrium. Avirtualwork correspondedtosuchforces, andasetofn+1equationscorrespondedto theconditionofequilibrium of thephysical system. Fromthe thermodynamicpointofview,every inïŹnitesimal transformation involving thegeneralizeddisplacementshad toobey to theïŹrst law,which couldbeexpressed in termsof the (n+1)generalizedLagrangianparameters. Theamountofheatcouldbewrittenasasum of (n+1) terms. Thenewalliancebetweenmechanicsandthermodynamics ledtoasortof symmetry betweenthermalandmechanicalquantities. Then+1functionsplayedtheroleofgeneralized thermal capacities, andthe last termwasnothingother thantheordinary thermal capacity. Theknowledgeof the “equilibriumequationsof a system”allowedDuhemtocompute thepartialderivativesof the thermal capacitywith regard to all theparameterswhichdescribed the state of the system, apart from its derivativewith regard to temperature. The thermal capacitieswere thereforeknown“except for an unspeciïŹed functionof temperature”. Theaxiomaticapproachofthermodynamicswaspublishedin1909inMathematischeAnnalen[76] under the title“Examinationof theFoundationsofThermodynamics” (UntersuchungenĂŒberdieGrundlagen 58
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics