Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 60 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 60 - in Differential Geometrical Theory of Statistics

Bild der Seite - 60 -

Bild der Seite - 60 - in Differential Geometrical Theory of Statistics

Text der Seite - 60 -

Entropy2016,18, 386 quelquechancede succĂšs sont celles qui sont fondĂ©es sur l’interventiondes lois statistiques comme,par exemple, la thĂ©orie cinĂ©tique des gaz. Ce point de vue, que je ne puis dĂ©velopper ici, peut se rĂ©sumer d’une façonun peuvulgaire comme il suit: Supposonsquenousvoulionsplacerungraind’avoineaumilieud’untasdeblĂ©; cela sera facile; supposonsquenousvoulions ensuite l’y retrouver et l’enretirer;nousnepourronsyparvenir. Tous lesphĂ©nomĂšnes irrĂ©versibles,d’aprĂšscertainsphysiciens, seraientconstruits surcemodĂšle)”. InPoincaré’s lecture,Massieuhasgreatly inïŹ‚uencedPoincarĂ© to introduceMassieucharacteristic function inprobability [86]. Aswehaveobserved,PoincarĂ©has introducedcharacteristic function inprobability lectureafterhis lectureon thermodynamicswherehediscoveredinitssecondedition[85], theMassieu’scharacteristic function.Wecanread that“SincefromthefunctionsofMr.Massieuonecandeduceotherfunctionsofvariables,allequations of thermodynamicscanbewrittensoas toonlycontain these functionsandtheirderivatives; itwill thusresult insomecases,agreat simpliïŹcation(Puisquedes fonctionsdeM.MassieuonpeutdĂ©duire lesautres fonctionsdesvariables, toutes lesĂ©quationsde laThermodynamiquepourronts’écrirede maniĂšreĂ neplusrenfermerqueces fonctionset leursdĂ©rivĂ©es; il enrĂ©sulteradonc,danscertainscas, unegrandesimpliïŹcation).”[85].He [85]added“MM.GibbsvonHelmholtz,Duhemhaveusedthis functionH=U−TSassumingthatTandVareconstant.Mr. vonHelmotzhascalled it ‘freeenergy’ andalsoproposes togivehimthenameof“kineticpotential”;Duhemcalled it ‘the thermodynamic potentialat constantvolume’; this is themost justiïŹednaming(MM.Gibbs,vonHelmoltz,Duhemont faitusagedecette functionH=TS−UenysupposantTetVconstants.M.vonHelmotz l’aappellĂ©e Ă©nergie libreetaproposeĂ©galementde luidonner lenomdepotentialkinetique;M.Duhemlanomme potentiel thermodynamique Ă  volume constant; c’est la dĂ©nomination la plus justiïŹĂ©e)”. In 1906, HenriPoincarĂ©alsopublishedanote [87]“ReïŹ‚ectiononThekinetic theoryofgases” (RĂ©ïŹ‚exionssur la thĂ©oriecinĂ©tiquedesgaz),wherehe said that: “Thekinetic theoryofgases leavesawkwardpoints for thosewhoareaccustomedtomathematical rigor . . . Oneof thepointswhichembarrassedmemost was the followingone: it is aquestionofdemonstrating that theentropykeepsdecreasing,but the reasoningofGibbsseemstosuppose thathavingmadevarytheoutsideconditionswewait that the regimeisestablishedbeforemakingthemvaryagain. Is this suppositionessential,or inotherwords, wecouldarriveatopposite results to theprincipleofCarnotbymakingvarytheoutsideconditions toofast so that thepermanentregimehas timetobecomeestablished?”. Jean-Marie Souriau has elaborated a disruptive and innovative “thĂ©orie gĂ©omĂ©trique de la chaleur (geometric theory of heat)” [88] after theworks of his predecessors as illustrated inFigure 4: “thĂ©orie analytique de la chaleur (analytic theory of heat)” by Jean Baptiste Joseph Fourier [88], “thĂ©oriemĂ©caniquede la chaleur (mechanic theoryofheat)”byFrançoisClausius [89]andFrançoisMassieu and“thĂ©oriemathĂ©matique de la chaleur (mathematic theory of heat)”bySimĂ©on-DenisPoisson [90,91], as illustrated in thisïŹgure: Figure 4. “ThĂ©orie analytique de la chaleur (analytic theory of heat)” by Jean Baptiste Joseph Fourier [88], “thĂ©oriemĂ©caniquede lachaleur (mechanic theoryofheat)”byFrançoisClausius [89] and“thĂ©oriemathĂ©matiquede lachaleur (mathematic theoryofheat)”bySimĂ©on-DenisPoisson[90]. 60
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics