Seite - 64 - in Differential Geometrical Theory of Statistics
Bild der Seite - 64 -
Text der Seite - 64 -
Entropy2016,18, 386
part is a coadjoint representationof G, that is the contragradientof theadjoint representation. It associates to
eachg∈Gthe linear isomorphismAd∗g∈GL(g∗), satisfying, for each:
ξ∈ g∗ andX∈ g : 〈
Ad∗g(ξ),X 〉
= 〈
ξ,Adg−1(X) 〉
.
Then, the fundamental equationsofLiegroup thermodynamicsaregivenby theactionof thegroup:
• ActionofLiegrouponLiealgebra:
β→Adg(β) (37)
• Transformationof characteristic functionafter actionofLiegroup:
Φ→Φ− 〈
θ (
g−1 )
,β 〉
(38)
• Invarianceof entropywith respect toactionofLiegroup:
s→ s (39)
• ActionofLiegroupongeometricheat, elementofdualLie algebra:
Q→ a(g,Q)=Ad∗g(Q)+θ(g) (40)
SouriauequationsofLiegroupthermodynamicsaresummarizedinthefollowingFigures5and6:
Figure5.GlobalSouriauschemeofLiegroupthermodynamics.
64
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik