Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 74 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 74 - in Differential Geometrical Theory of Statistics

Bild der Seite - 74 -

Bild der Seite - 74 - in Differential Geometrical Theory of Statistics

Text der Seite - 74 -

Entropy2016,18, 386 ThisPoissonstructureiscalledthemodifiedcanonicalPoissonstructurebymeansofthesymplectic cocycle Θ˜. Thesymplectic leavesofg∗ equippedwiththisPoissonstructureare theorbitsofanaffine actionwhose linearpart is thecoadjointaction,withanadditional termdeterminedby Θ˜. 6.6. KoszulAffineRepresentationofLieGroupandLieAlgebra Previously,wehavedevelopedSouriau’sworksontheaffinerepresentationofaLiegroupusedto elaborate theLiegroupthermodynamics.Wewill studyhereanotherapproachofaffinerepresentation ofLiegroupandLiealgebra introducedbyJean-LouisKoszul.Weconsolidate the linkof Jean-Louis KoszulworkwithSouriaumodel. ThismodelusesanaffinerepresentationofaLiegroupandofaLie algebra inafinite-dimensionalvectorspace, seenasspecialexamplesofactions. Since theworkofHenriPoincareandElieCartan, the theoryofdifferential formshasbecome an essential instrument of modern differential geometry [112–115] used by Jean-Marie Souriau for identifying the space of motions as a symplectic manifold. However, as said by Paulette Libermann [116], exceptHenri Poincaréwhowrote shortly before his death a report on thework ofElieCartanduringhis application for the SorbonneUniversity, theFrenchmathematiciansdid notsee the importanceofCartan’sbreakthroughs. SouriaufollowedlecturesofElieCartan in1945. ThesecondstudentofElieCartanwasJean-LouisKoszul.Koszul introducedtheconceptsofaffine spaces,affine transformationsandaffinerepresentations [117–124].Moreespecially,weare interested byKoszul’s definition for affine representations of Lie groups and Lie algebras. Koszul studied symmetrichomogeneousspacesanddefinedrelationbetweeninvariantflataffineconnectionstoaffine representationsofLiealgebras,andcharacterized invariantHessianmetricsbyaffinerepresentations ofLiealgebras [117–124].Koszulprovidedcorrespondencebetweensymmetrichomogeneousspaces with invariantHessianstructuresbyusingaffinerepresentationsofLiealgebras,andprovedthata simplyconnectedsymmetrichomogeneousspacewith invariantHessianstructure isadirectproduct ofaEuclideanspaceandahomogeneousself-dualregularconvexcone[117–124]. LetGbeaconnected LiegroupandletG/KbeahomogeneousspaceonwhichGactseffectively,Koszulgaveabijective correspondencebetweenthesetofG-invariantflatconnectionsonG/Kandthesetofacertainclass of affine representationsof theLie algebraofG [117–124]. Themain theoremofKoszul is: letG/K beahomogeneousspaceofaconnectedLiegroupGandlet gandkbe theLiealgebrasofGandK, assumingthatG/K isendowedwithaG-invariantflatconnection, thengadmitsanaffinerepresentation (f,q)on thevectorspaceE.Conversely, suppose thatG is simplyconnectedandthatg is endowedwith anaffinerepresentation, thenG/KadmitsaG-invariantflatconnection. Koszul has proved the following [117–124]. LetΩ be a convex domain inRn containing no complete straight lines, andanassociatedconvexconeV(Ω)= {(λx,x)∈Rn×R/x∈Ω,λ∈R+}. Thenthereexistsanaffineembedding: : x∈Ω → [ x 1 ] ∈V(Ω) (94) Ifweconsiderη thegroupofhomomorphismofA(n,R) intoGL(n+1,R)givenby: s∈A(n,R) → [ f(s) q(s) 0 1 ] ∈GL(n+1,R) (95) andassociatedaffinerepresentationofLiealgebra:[ f q 0 0 ] (96) withA(n,R) thegroupofallaffinetransformationsofRn.Wehaveη(G(Ω))⊂G(V(Ω))andthepair (η, )of thehomomorphism η :G(Ω)→G(V(Ω)) andthemap :Ω→V(Ω) isequivariant. 74
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics