Seite - 74 - in Differential Geometrical Theory of Statistics
Bild der Seite - 74 -
Text der Seite - 74 -
Entropy2016,18, 386
ThisPoissonstructureiscalledthemodifiedcanonicalPoissonstructurebymeansofthesymplectic
cocycle Θ˜. Thesymplectic leavesofg∗ equippedwiththisPoissonstructureare theorbitsofanaffine
actionwhose linearpart is thecoadjointaction,withanadditional termdeterminedby Θ˜.
6.6. KoszulAffineRepresentationofLieGroupandLieAlgebra
Previously,wehavedevelopedSouriau’sworksontheaffinerepresentationofaLiegroupusedto
elaborate theLiegroupthermodynamics.Wewill studyhereanotherapproachofaffinerepresentation
ofLiegroupandLiealgebra introducedbyJean-LouisKoszul.Weconsolidate the linkof Jean-Louis
KoszulworkwithSouriaumodel. ThismodelusesanaffinerepresentationofaLiegroupandofaLie
algebra inafinite-dimensionalvectorspace, seenasspecialexamplesofactions.
Since theworkofHenriPoincareandElieCartan, the theoryofdifferential formshasbecome
an essential instrument of modern differential geometry [112–115] used by Jean-Marie Souriau
for identifying the space of motions as a symplectic manifold. However, as said by Paulette
Libermann [116], exceptHenri Poincaréwhowrote shortly before his death a report on thework
ofElieCartanduringhis application for the SorbonneUniversity, theFrenchmathematiciansdid
notsee the importanceofCartan’sbreakthroughs. SouriaufollowedlecturesofElieCartan in1945.
ThesecondstudentofElieCartanwasJean-LouisKoszul.Koszul introducedtheconceptsofaffine
spaces,affine transformationsandaffinerepresentations [117–124].Moreespecially,weare interested
byKoszul’s definition for affine representations of Lie groups and Lie algebras. Koszul studied
symmetrichomogeneousspacesanddefinedrelationbetweeninvariantflataffineconnectionstoaffine
representationsofLiealgebras,andcharacterized invariantHessianmetricsbyaffinerepresentations
ofLiealgebras [117–124].Koszulprovidedcorrespondencebetweensymmetrichomogeneousspaces
with invariantHessianstructuresbyusingaffinerepresentationsofLiealgebras,andprovedthata
simplyconnectedsymmetrichomogeneousspacewith invariantHessianstructure isadirectproduct
ofaEuclideanspaceandahomogeneousself-dualregularconvexcone[117–124]. LetGbeaconnected
LiegroupandletG/KbeahomogeneousspaceonwhichGactseffectively,Koszulgaveabijective
correspondencebetweenthesetofG-invariantflatconnectionsonG/Kandthesetofacertainclass
of affine representationsof theLie algebraofG [117–124]. Themain theoremofKoszul is: letG/K
beahomogeneousspaceofaconnectedLiegroupGandlet gandkbe theLiealgebrasofGandK,
assumingthatG/K isendowedwithaG-invariantflatconnection, thengadmitsanaffinerepresentation
(f,q)on thevectorspaceE.Conversely, suppose thatG is simplyconnectedandthatg is endowedwith
anaffinerepresentation, thenG/KadmitsaG-invariantflatconnection.
Koszul has proved the following [117–124]. LetΩ be a convex domain inRn containing no
complete straight lines, andanassociatedconvexconeV(Ω)= {(λx,x)∈Rn×R/x∈Ω,λ∈R+}.
Thenthereexistsanaffineembedding:
: x∈Ω → [
x
1 ]
∈V(Ω) (94)
Ifweconsiderη thegroupofhomomorphismofA(n,R) intoGL(n+1,R)givenby:
s∈A(n,R) → [
f(s) q(s)
0 1 ]
∈GL(n+1,R) (95)
andassociatedaffinerepresentationofLiealgebra:[
f q
0 0 ]
(96)
withA(n,R) thegroupofallaffinetransformationsofRn.Wehaveη(G(Ω))⊂G(V(Ω))andthepair
(η, )of thehomomorphism η :G(Ω)→G(V(Ω)) andthemap :Ω→V(Ω) isequivariant.
74
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik