Seite - 82 - in Differential Geometrical Theory of Statistics
Bild der Seite - 82 -
Text der Seite - 82 -
Entropy2016,18, 386
logpξˆ(ξ)=−〈ξ,β〉+Φ(β)
S( −
ξ)=−
Ω∗ pξˆ(ξ) · logpξˆ(ξ) ·dξ=−E [
logpξˆ(ξ) ]
S( −
ξ)= 〈E [ξ] ,β〉−Φ(β)= 〈ξˆ,β〉−Φ(β) (151)
Thenwecanrecover therelationwithFishermetric:
I(β)=−E [
∂2logpβ(ξ)
∂β2 ]
=−E [ ∂2(−〈ξ,β〉+Φ(β))
∂β2 ]
=−∂ 2Φ(β)
∂β2
ξˆ= ∂Φ(β)
∂β
I(β)=E [
∂logpβ(ξ)
∂β ∂logpβ(ξ)
∂β T]
=E [( ξ− ξˆ)(ξ− ξˆ)T]=E[ξ2]−E [ξ]2=Var(ξ) (152)
withCrouzeix relationestablished in1977 [147,148], ∂2Φ
∂β2 = [ ∂2S
∂ξˆ2 ]−1
giving thedualmetric, indual
space,whereentropySand(minus) logarithmofcharacteristic function,Φ, aredualpotential functions.
Thefirstmetricof informationgeometry [149,150], theFishermetric isgivenbythehessianof the
characteristic function logarithm:
I(β)=−E [
∂2logpβ(ξ)
∂β2 ]
=−∂
2Φ(β)
∂β2 = ∂2logψΩ(β)
∂β2 (153)
ds2g=dβ TI(β)dβ=∑
ij gijdβidβjwithgij=[I(β)]ij (154)
Thesecondmetricof informationgeometry isgivenbyhessianof theShannonentropy:
∂2S(ξˆ)
∂ξˆ2 = [ ∂2Φ(β)
∂β2 ]−1
withS(ξˆ)= 〈
ξˆ,β 〉−Φ(β) (155)
ds2h=dξˆ T [
∂2S(ξˆ)
∂ξˆ2 ]
dξˆ=∑
ij hijdξˆidξˆjwithhij= [
∂2S(ξˆ)
∂ξˆ2 ]
ij (156)
Bothmetricswillprovide thesamedistance:
ds2g=ds
2
h (157)
FromtheCartan innerproduct,wecangenerate logarithmof theKoszulcharacteristic function,
anditsLegendre transformtodefineKoszulentropy,KoszuldensityandKoszulmetric, asexplained
in the followingFigure9:
82
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik