Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 86 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 86 - in Differential Geometrical Theory of Statistics

Bild der Seite - 86 -

Bild der Seite - 86 - in Differential Geometrical Theory of Statistics

Text der Seite - 86 -

Entropy2016,18, 386 GL(n)×Rn→Rn (A,x) →Ax (171) ThegroupGL(n) isaLiegroup, isasubgroupof thegeneralaffinegroupGA(n), composedof allpairs (A,υ)whereA∈GL(n)andυ∈Rn, thegroupoperationgivenby: (A1,υ1)(A2,υ2)=(A1A2,A1υ2+υ1) (172) GL(n) isanopensubsetofRn 2 ,andmaybeconsideredasn2-dimensionaldifferentialmanifoldwiththe samedifferentiablestructure thanRn 2 .Multiplicationandinversionare infinitelyoftendifferentiable mappings.Consider thevectorspacegl(n)ofrealn×nmatricesandthecommutatorproduct: gl(n)×gl(n)→ gl(n) (A,B) →AB−BA=[A,B] (173) This isaLieproductmakinggl(n) intoaLiealgebra. Theexponentialmapis thenthemapping definedby: exp:gl(n)→GL(n) A → exp(A)= ∞∑ n=0 An n! (174) RestrictingA tohavepositivedeterminant,oneobtains thepositivegeneralaffinegroupGA+(n) thatacts transitivelyonRnby: ((A,υ) ,x) →Ax+υ (175) IncaseofsymmetricpositivedefinitematricesSym+(n),wecanuse theCholeskydecomposition: R=LLT (176) where L is a lower triangularmatrixwith real andpositive diagonal entries, and LT denotes the transposeofL, todefinethesquarerootofR. Given a positive semidefinite matrix R, according to the spectral theorem, the continuous functional calculus can be applied to obtain a matrix R1/2 such that R1/2 is itself positive and R1/2R1/2=R. TheoperatorR1/2 is theuniquenon-negativesquarerootofR. Nn = {ℵ(μ,Σ)/μ∈Rn,Σ∈Sym+n} the class of regular multivariate normal distributions, whereμ is themeanvectorandΣ is the (symmetricpositivedefinite) covariancematrix, is invariant under the transitiveactionofGA(n). The inducedactionofGA(n)onRn×Sym+n is thengivenby: GA(n)×(Rn×Sym+n)→Rn×Sym+n ((A,υ) ,(μ,Σ)) → (Aμ+υ,AΣAT) (177) and GA(n)×Rn→Rn ((A,υ) ,x) →Ax+υ (178) Asthe isotropygroupof (0, In) isequal toO(n),wecanobserve that: Nn=GA(n)/O(n) (179) Nn is an open subset of the vector spaceTn = {(η,Ω)/η∈Rn,Ω∈Symn} and is adifferentiable manifold,where the tangentspaceatanypointmaybe identifiedwithTn. 86
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics