Seite - 86 - in Differential Geometrical Theory of Statistics
Bild der Seite - 86 -
Text der Seite - 86 -
Entropy2016,18, 386
GL(n)×Rn→Rn
(A,x) →Ax (171)
ThegroupGL(n) isaLiegroup, isasubgroupof thegeneralaffinegroupGA(n), composedof
allpairs (A,υ)whereA∈GL(n)andυ∈Rn, thegroupoperationgivenby:
(A1,υ1)(A2,υ2)=(A1A2,A1υ2+υ1) (172)
GL(n) isanopensubsetofRn 2 ,andmaybeconsideredasn2-dimensionaldifferentialmanifoldwiththe
samedifferentiablestructure thanRn 2
.Multiplicationandinversionare infinitelyoftendifferentiable
mappings.Consider thevectorspacegl(n)ofrealn×nmatricesandthecommutatorproduct:
gl(n)×gl(n)→ gl(n)
(A,B) →AB−BA=[A,B] (173)
This isaLieproductmakinggl(n) intoaLiealgebra. Theexponentialmapis thenthemapping
definedby:
exp:gl(n)→GL(n)
A → exp(A)= ∞∑
n=0 An
n! (174)
RestrictingA tohavepositivedeterminant,oneobtains thepositivegeneralaffinegroupGA+(n)
thatacts transitivelyonRnby:
((A,υ) ,x) →Ax+υ (175)
IncaseofsymmetricpositivedefinitematricesSym+(n),wecanuse theCholeskydecomposition:
R=LLT (176)
where L is a lower triangularmatrixwith real andpositive diagonal entries, and LT denotes the
transposeofL, todefinethesquarerootofR.
Given a positive semidefinite matrix R, according to the spectral theorem, the continuous
functional calculus can be applied to obtain a matrix R1/2 such that R1/2 is itself positive and
R1/2R1/2=R. TheoperatorR1/2 is theuniquenon-negativesquarerootofR.
Nn = {ℵ(μ,Σ)/μ∈Rn,Σ∈Sym+n} the class of regular multivariate normal distributions,
whereμ is themeanvectorandΣ is the (symmetricpositivedefinite) covariancematrix, is invariant
under the transitiveactionofGA(n). The inducedactionofGA(n)onRn×Sym+n is thengivenby:
GA(n)×(Rn×Sym+n)→Rn×Sym+n
((A,υ) ,(μ,Σ)) → (Aμ+υ,AΣAT) (177)
and
GA(n)×Rn→Rn
((A,υ) ,x) →Ax+υ (178)
Asthe isotropygroupof (0, In) isequal toO(n),wecanobserve that:
Nn=GA(n)/O(n) (179)
Nn is an open subset of the vector spaceTn = {(η,Ω)/η∈Rn,Ω∈Symn} and is adifferentiable
manifold,where the tangentspaceatanypointmaybe identifiedwithTn.
86
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik