Seite - 88 - in Differential Geometrical Theory of Statistics
Bild der Seite - 88 -
Text der Seite - 88 -
Entropy2016,18, 386
Figure11.AfïŹneLiegroupactionformultivariateGaussian law.
ConsideringthecurveÎł(t)anditsderivative .
Îł(t):
Îł(t)= [
R1/2(t) m(t)
0 1 ]
and .
Îł(t)= [ .
R 1/2
(t) .
m(t)
0 0 ]
(185)
Wecanconsider thecurvewith thepointÎł(0)movedat the identityelementonthe leftoronthe
right. Then, the tangentplanat identityelementprovides theLiealgebra:
ÎL(t)= LMâ1 (Îł(t))= [
Râ1/2R1/2(t) Râ1/2(m(t)âm)
0 1 ]
(186)
.
ÎL(t) âŁâŁâŁ
t=0 = [
Râ1/2 .
R 1/2
(0) Râ1/2 .m(0)
0 1 ]
= ddt (LMâ1(Îł(t))) âŁâŁâŁ
t=0 = dLMâ1 .
Îł(0)= dLMâ1 .
M (187)
Liealgebraontherightandonthe left is thedeïŹnedby:
dLMâ1 :TM(G)â gL
.
M âΩL= dLMâ1 .
M=Mâ1 .
M= [
Râ1/2 .
R 1/2 Râ1/2 .m
0 0 ]
(188)
dRMâ1 :TM(G)â gR
.
M âΩR= dRMâ1 .
M= .
MMâ1= [
Râ1/2 .
R 1/2 .
mâRâ1/2 .R1/2 .m
0 0 ]
(189)
Wecan thenobserve thevelocities in twodifferentways, either byplacing in aïŹxedoutside
frame,eitherbyputting inplaceof theelement in theprocessofmovingbyplacing in thereference
frameof theelement.[
X(t)
1 ]
=M [
x
1 ]
â [ .
X(t)
0 ]
=ΩR [
X(t)
1 ]
withxïŹxed (190)
[
x(t)
1 ]
=Mâ1 [
X
1 ]
â [ .
x(t)
0 ]
=âΩL [
X
1 ]
withXïŹxed (191)
In the following,wewill complete the global viewby the operatorswhichwill allow to link
algebra (fromthe leftor theright)betweenthemandalsoconnect to theirdual.WewillïŹrst consider
88
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik