Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 89 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 89 - in Differential Geometrical Theory of Statistics

Bild der Seite - 89 -

Bild der Seite - 89 - in Differential Geometrical Theory of Statistics

Text der Seite - 89 -

Entropy2016,18, 386 theautomorphisms, theactionbyconjugationof theLiegrouponitself thatallowsthisoperator to carryamemberof thegroup. AD :G×G→G M,N →ADMN=M.N.M−1 (192) ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ M1= [ R1/21 m1 0 1 ] , M2= [ R1/22 m2 0 1 ] ADM1M2= [ R1/22 −R1/22 m1+R1/21 m2+m1 0 1 ] (193) IfnowweconsideracurveN(t)curveonthemanifoldvia the identityat t=0. Its imagebythe previousoperatorwill be thencurveγ=M ·N(t) ·M−1 passing through identityelementat t=0. As . N(0) isanelementof theLiealgebraandits imagebypreviousconjugationoperator iscalledthe Adjointoperator: Ad :G×g→ g M,n →AdMn=M.n.M−1= ddt ∣∣∣ t=0 (ADMN(t))with { N(0)= I . N(0)=n∈ g (194) Wecanthencompute theAdjointoperator for thepreviousLiegroup: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ n2L= ⎡⎣ R−1/22 .R1/22 R−1/22 .m2 0 0 ⎤⎦ , n2R= ⎡⎣ R−1/22 .R1/22 −R−1/22 .R1/22 m2+ .m2 0 0 ⎤⎦ AdM1n2L=n2R andAdM2n2R= ⎡⎣ R−1/22 .R1/22 −R−1/22 .R1/22 m2+ .R1/22 m2+R1/22 .m2 0 0 ⎤⎦ , AdM−11 n2R=n2L (195) Werecall that theLiealgebrahasbeendefinedas the tangentspaceat the identityofaLiegroup. Wewill then introduceaLiebracket [., .], theexpressionof theoperatorassociatedwith thecombined actionof theLiealgebraon itself, calledanadjointoperator. Theadjointoperator represents theaction byconjugationof theLiealgebraonitselfandisdefinedby: ad : g×g→ g n,m → admn=m ·n−n ·m= ddt ∣∣∣ t=0 (AdMn(t))= [m,n]with { . N(0)=n∈ g . M(0)=m∈ g (196) Wecanthencompute thisoperator forourusecase: n1L= ⎡⎣ R−1/21 .R1/21 R−1/21 .m1 0 0 ⎤⎦ , n2L= ⎡⎣ R−1/22 .R1/22 R−1/22 .m2 0 0 ⎤⎦ (197) adn1Ln2L=[n1L,n2L]= ⎡⎢⎣ 0 R−1/21 ( . R 1/2 1 . m2− . R 1/2 2 . m1 ) R−1/22 0 0 ⎤⎥⎦ (198) adn1Rn2R=[n1R,n2R]= ⎡⎣ 0 R−1/21 .R1/21 ( −R−1/22 . R 1/2 2 m2+ . m2 ) −R−1/22 . R 1/2 2 ( −R−1/21 . R 1/2 1 m1+ . m1 ) 0 0 ⎤⎦ (199) 89
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics