Seite - 90 - in Differential Geometrical Theory of Statistics
Bild der Seite - 90 -
Text der Seite - 90 -
Entropy2016,18, 386
Tostudythegeodesic trajectoriesof thegroup,weconsider theLagrangianfromthetotalkinetic
energy(aquadratic formonspeeds). Itmaytherefore inparticularbewritten in the leftalgebraâleftâ,
with thescalarproductassociatedwith themetric.
EL= 1
2 ănL,nLă= 12Tr [
nTLnL ]
(200)
Ifweconsiderasscalarproduct:
ă., .ă : gâĂgâR
k,n â ăk,nă=Tr(kTn) (201)
andleftalgebra:
nL= âĄâŁ Râ1/2 .R1/2 Râ1/2 .m
0 0 â€âŠ (202)
weobtain for the totalkineticenergy
EL= 1
2 (
Tr (
Râ1 .
R )
+ .
mTRâ1 .m )
(203)
Wewill then introduce the coadjoint operator that will enable us towork on the elements
of the dual algebra of the Lie algebra deïŹned above. Like algebra,which is physically the space
of instantaneous speeds, the dual algebra is the space ofmoments. For the dual of left algebra,
themoment isgivenby:
Î L= âEL
ânL =nL (204)
WhereEL is thekineticenergyof thesystemandiscurrentlyassociatedwithÎ L isanelementof
the leftalgebra. Themomentspace is thedualalgebra,denotedgâ, associatedwith theLiealgebrag.
Thisvalue
isdeducedfromthecomputation:â©
âEL
ânL ,ÎŽU âȘ
=Lim
Δâ0 EL(nL+Δ ·ΎU)âEL(nL)
Δ
withEL(nL+Δ ·ΎU)= 12 ănL+Δ.ÎŽU,nL+Δ ·ΎUă= 1
2 (nL+Δ ·ΎU)T (nL+Δ
·ΎU)â©
âEL
ânL ,ÎŽU âȘ
=2 · 1
2 tr ( ηTLΎU )
= ănL,ÎŽUăâ âELânL =nL (205)
Thenthemomentmapisgivenby:
αM : gâ gâ
nL âÎ L=ηL (206)
We can observe that the application that turns left algebra into dual algebra is the identity
applicationbut,physically, theïŹrstaremomentsandthesecondsare instantaneousspeeds.
WecanalsodeïŹnethemomentÎ R associatedto therightalgebraηRby:
ăÎ L,nLă= â©
Î L,Mâ1nRM âȘ
= ăÎ R,nRă (207)
90
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik