Seite - 91 - in Differential Geometrical Theory of Statistics
Bild der Seite - 91 -
Text der Seite - 91 -
Entropy2016,18, 386
ButasÎ L=nL,wecandeduce
that:â©
nL,Mâ1nRM âȘ
= ăÎ R,nRă
withM= [
R1/2 m
0 1 ]
, nL= [
Râ1/2 .
R 1/2 Râ1/2 .m
0 0 ]
andηR= [
Râ1/2 .
R 1/2 .
mâRâ1/2 .R1/2 .m
0 0 ]
âÎ R= [
Râ1/2 .
R 1/2 +Râ1 .mmT Râ1 .m
0 0 ] (208)
Then, theoperator that transformtherightalgebra to itsdualalgebra isgivenby:
ÎČM : gâ gâ
nR= [
ηR1 ηR2
0 0 ]
âÎ R= [
ηR1 ( 1+mTRâ1m ) +ηR2mTRâ1 ηR1Râ1m+Râ1ηR2
0 0 ]
(209)
There isanoperator tochangetheviewofalgebra. Therefore, there isanoperator thatdid the
sameto thedualalgebra. This is called theco-adjointoperatorandit is theconjugateactionof theLie
grouponitsdualalgebra:{
Adâ :GĂgââ g
M,η âAdâMη with ăAdâMη,nă= ăη,AdMnăwherenâ g (210)
Wecanthendevelopthisexpressionforouruse in thecaseofanafïŹnesup-group.WeïŹnd:
â§âȘâȘâȘâȘâȘâȘâȘâȘâȘâȘâȘâšâȘâȘâȘâȘâȘâȘâȘâȘâȘâȘâȘâ© M= [
A b
0 1 ]
âG
η= [
η1 η2
0 0 ]
â gâ
n= [
n1 n2
0 0 ]
â g â â§âȘâȘâšâȘâȘâ© â© AdâMη,n âȘ
= ăη,AdMnă= ⩠η,MnMâ1 âȘ
â© AdâMη,n âȘ
= â©[
η1âη2bT Aη2
0 0 ]
,n âȘ âAdâMη= [ η1âη2bT Aη2
0 0 ]
(211)
andwecanalsoobserve that:
AdâMâ1η= [
η1+Aη2bT Aη2
0 0 ]
(212)
Similarly thereexists the followingrelationbetweenthe leftandtherightalgebras:
AdâMÎ R=Î L andAdâMâ1Î L=Î R (213)
AswehavedeïŹneda commutator on theLie algebra, it is possible todeïŹneoneon its dual
algebra. ThiscommutatoronthedualalgebracanalsobedeïŹnedusingtheoperatorexpressingthe
combinedactionof thealgebraof itsdualalgebra. Thisoperator
iscalledtheco-adjointoperator:{
adâ : gĂgââ gâ
n,η â adânη with ăadânη,Îșă= ăη,adnÎșăwhereÎșâ g (214)
Wecandevelopthisco-adjointoperatoron itsdualalgebra forouruse-case:
91
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik