Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 92 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 92 - in Differential Geometrical Theory of Statistics

Bild der Seite - 92 -

Bild der Seite - 92 - in Differential Geometrical Theory of Statistics

Text der Seite - 92 -

Entropy2016,18, 386 ⎧âŽȘâŽȘâŽȘâŽȘâŽȘâŽȘâŽȘâŽȘâŽȘâŽȘâŽȘ⎚âŽȘâŽȘâŽȘâŽȘâŽȘâŽȘâŽȘâŽȘâŽȘâŽȘâŽȘ⎩ Îș= [ Îș1 Îș2 0 0 ] ∈G η= [ η1 η2 0 0 ] ∈ g∗ n= [ n1 n2 0 0 ] ∈ g ⇒ ⎧âŽȘâŽȘ⎚âŽȘâŽȘ⎩ 〈ad∗nη,Îș〉= ă€ˆÎ·,adnÎș〉= ă€ˆÎ·,nÎș−Îșn〉 〈ad∗nη,Îș〉= 〈[ −η2nT2 n1η2 0 0 ] ,Îș âŒȘ ⇒ ⎧âŽȘâŽȘ⎚âŽȘâŽȘ⎩ ad∗nη= [ −η2nT2 n1η2 0 0 ] ad∗nη={n,η} (215) This co-adjoint operator will give the Euler-PoincarĂ© equation. While the Euler-Lagrange equations isdeïŹnedonthe tangentbundle (unionof the tangentspacesateachpoint)of themanifold andgive thegeodesics, theEuler-PoincarĂ©equationgivesadifferential systemonthedualLiealgebra of thegroupassociatedwith themanifold. Wecanalsocomplete thesemapsbyusingadditionalones. First,p∈T∗MG themomentassociated with . M∈TMG in tangentspaceofGatMandalso twoothermomentsmaptheelementof thedual algebra indual tangentspace, respectivelyonthe leftandontheright:⎧âŽȘ⎚âŽȘ⎩ 〈ΠL,nL〉= 〈 dL∗M−1ΠL, . M âŒȘ 〈 ΠL,dLM−1 . M âŒȘ = 〈 ΠL,M−1 . M âŒȘ ⇒ p=(M−1)TΠL (216) where dL∗M−1 : g ∗ L→T∗MG ΠL → p= ( M−1 )TΠL and dR∗M−1 : g ∗ R→T∗MG ΠR → p=ΠR ( M−1 )T (217) Fromtheserelations,wecanalsoobserve that: ΠL=nL=M−1 . M ⇒ ⎧⎚⎩ p= ( M−1 )TM−1 .M p=ΞM · . MwithΞM= ( M−1 )TM−1 (218) All thesemapscouldbesummarized in the followingFigure12: Figure12.Mapsbetweenalgebras. 92
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics