Seite - 92 - in Differential Geometrical Theory of Statistics
Bild der Seite - 92 -
Text der Seite - 92 -
Entropy2016,18, 386
â§âȘâȘâȘâȘâȘâȘâȘâȘâȘâȘâȘâšâȘâȘâȘâȘâȘâȘâȘâȘâȘâȘâȘâ© Îș= [
Îș1 Îș2
0 0 ]
âG
η= [
η1 η2
0 0 ]
â gâ
n= [
n1 n2
0 0 ]
â g â â§âȘâȘâšâȘâȘâ© ăadânη,Îșă= ăη,adnÎșă= ăη,nÎșâÎșnă
ăadânη,Îșă= â©[
âη2nT2 n1η2
0 0 ]
,Îș âȘ â â§âȘâȘâšâȘâȘâ© adânη= [
âη2nT2 n1η2
0 0 ]
adânη={n,η} (215)
This co-adjoint operator will give the Euler-Poincaré equation. While the Euler-Lagrange
equations isdeïŹnedonthe tangentbundle (unionof the tangentspacesateachpoint)of themanifold
andgive thegeodesics, theEuler-Poincaréequationgivesadifferential systemonthedualLiealgebra
of thegroupassociatedwith themanifold.
Wecanalsocomplete thesemapsbyusingadditionalones. First,pâTâMG themomentassociated
with .
MâTMG in tangentspaceofGatMandalso twoothermomentsmaptheelementof thedual
algebra indual tangentspace, respectivelyonthe
leftandontheright:â§âȘâšâȘâ©
ăÎ L,nLă= â©
dLâMâ1Î L, .
M âȘ
â©
Î L,dLMâ1 .
M âȘ
= â©
Î L,Mâ1 .
M âȘ â p=(Mâ1)TÎ L (216)
where
dLâMâ1 : g â
LâTâMG
Î L â p= ( Mâ1 )TÎ L and dRâMâ1 : g â
RâTâMG
Î R â p=Î R ( Mâ1 )T (217)
Fromtheserelations,wecanalsoobserve that:
Î L=nL=Mâ1 .
M
â â§âšâ© p= ( Mâ1 )TMâ1 .M
p=ÎM · .
MwithÎM= ( Mâ1 )TMâ1 (218)
All thesemapscouldbesummarized in the followingFigure12:
Figure12.Mapsbetweenalgebras.
92
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik