Seite - 94 - in Differential Geometrical Theory of Statistics
Bild der Seite - 94 -
Text der Seite - 94 -
Entropy2016,18, 386
This is theEuler-Poincaréequationofgeodesic.Wecanobservethatwehaveobtainedareduction
of the followingEuler-Lagrangeequation[27,156,187]: { ..
R+ .
m .
mT− .RR−1 .R=0
..
m− .RR−1 .m=0 associatedto the
informationgeometrymetricds2= dmTR−1dm+ 12Tr (( R−1dR )2).
The Fisher information defines a metric turning Nn = {(m,R)∈Rn×Sym+(n)} into a
Riemannianmanifold. The innerproductof twotangentvectors (m1,R1)∈Tn and (m2,R2)∈Tn at
thepoint (μ,Σ)∈Nn isgivenby:
g(μ,Σ) ((m1,R1) ,(m2,R2))=m T
1Σ −1m2+ 1
2 tr (
Σ−1R1Σ−1R2 )
(227)
andthegeodesic isgivenby:
l(χ)= t1
t0 √
gχ(t) ( .
χ(t), .
χ(t) )
dt (228)
Wecanalsoobserve that themanifoldofmultivariateGaussian ishomogeneouswithrespect to
positiveaffinegroupGA+(n):
ds2Y= ds 2
X forY=Σ 1/2X+μwithGA+(n)={(μ,Σ)∈R×GL(R)/det(Σ)>0} (229)
characterizedbytheactionofthegroup (m,R) → ρ.(m,R)= (
Σ1/2m+μ,Σ1/2RΣ1/2T )
,ρ∈GA+(n)
with [
Y
1 ]
= [
Σ1/2 μ
0 1 ][
X
1 ]
(230)
ds2Y= d (
Σ1/2m+μ )T(
Σ1/2RΣ1/2T )−1
d (
Σ1/2m+μ )
+ 1
2 Tr (((
Σ1/2RΣ1/2T )−1
d (
Σ1/2RΣ1/2T ))2)
ds2Y= dm TR−1dm+ 1
2 Tr (( R−1dR )2)
= ds2X (231)
Since thespecialorthogonalgroupSO(n)={δ∈GL(R)/det(δ)=1} is thestabilizersubgroup
of (0, In),wehavethe following isomorphism:
GA+(n)/SO(n)→Nn={(m,R)∈Rn×Sym+(n)}
ρ=(μ,Σ) → ρ.(0, In)= (
μ,Σ1/2Σ1/2T )
=(μ,Σ) (232)
We can then restrict the computation of the geodesic from (0, In) and thenwe can partially
integrate thesystemofequations: ⎧⎨⎩ .
m=Rb
.
R=R ( B−bmT) (233)
where (
R−1(0)
.m(0),R−1(0) ( .
R(0)+ .
m(0)m(0)T ))
=(b,B)∈Rn×Symn(R)are the integrationconstants.
FromthisEuler-Poincaréequation,wecancomputegeodesicsbygeodesic shooting [188–191]
usingclassicalEriksenequations [192–195],by the followingchangeofparameters:
{ Δ(t)=R−1(t)
δ(t)=R−1(t)m(t) ⇒ ⎧⎪⎪⎪⎨⎪⎪⎪⎩ .
Δ=−BΔ+bmT
.
δ=−Bδ+(1+δTΔ−1δ)b
Δ(0)= Ip,δ(0)=0 with ⎧⎨⎩ .
Δ(0)=−B
.
δ(0)=b (234)
94
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik