Seite - 102 - in Differential Geometrical Theory of Statistics
Bild der Seite - 102 -
Text der Seite - 102 -
Entropy2016,18, 386
Toconclude,wewillmakereference toAlainBerthoz [217]atCollegedeFrancewhohasstudied
braincodingofmovement. Themostrecentstudiesonthis topic,byAlexandreAfgoustidisPh.D. [218]
âInvariantHarmonicAnalysis andGeometry in theWorkingsof theBrainâsupervisedbyDanielBennequin,
Afgoustidis [218]consolidate the idea thatbrainvestibularchannelsandotolithescodeLiealgebraof
thehomogeneousGalileogroupas illustrated in the followingFigure15.
Figure15.CodingofhomogeneousGalileoalgebrabyvestibularsystemandotolithes.
Souriaugave thesameideas in thisdirectionregardinghowthebraincouldcode invariants [219]:
Lorsque il yuntremblementde terre,nousassistonsĂ lamortde lâEspace. . . . Nousvivonsavec
noshabitudesquenouspensonsuniverselles. . . . Laneuroscience sâoccupe rarementde lagĂ©omĂ©trie
. . . Pour les singesquiviventdans les arbres, certainespropriĂ©tĂ©sdugroupedâEuclide sontmieux
cùblées dans leurs cerveaux (When there is an earthquake,we arewitnessing the death of Space
. . . We livewith our habits thatwe think are universal.... Neuroscience rarely is interested in
geometry . . . For themonkeys that live in trees, someproperties of theEuclidgrouparebetter coded
in their brains).
Souriauaddedanecdotes fromadiscussionwithastudentofBohr that [220]:
LâĂ©lĂšvedemandaĂ Bohrquâilne comprenaitpas leprincipedecorrespondance. Bohr luidemanda
de sâassoir et il tourna autour de lui. Bohr lui dit tu dois commencer Ă avoirmal au cĆur, câest
que tucommencesĂ comprendre cequâest leprincipede correspondance (The student said toBohr
thathedidnotunderstand theprinciple of correspondence. Bohraskedhimto sit andhe turned
around. Bohr said,youshouldstart tobe seasick, it is then thatyoubegin tounderstandwhat the
correspondenceprinciple is.).
Acknowledgments: Iwould like to thankCharles-MichelMarleandGerydeSaxcé for the fruitfuldiscussionson
Souriaumodelof statisticalphysics thathelpmetounderstandthe fundamentalnotionofafïŹnerepresentationof
Liegroupandalgebra,momentmapandcoadjointorbits. Iwouldalso like to thankMichelBoyomthat introduce
meto Jean-LouisKoszulworksonafïŹnerepresentationofLiegroupandLiealgebra.
Sionajouteque la critiquequi accoutume lâesprit, surtout enmatiĂšrede faits, Ă recevoirde simplesprobabilitĂ©s
pour des preuves, est, par cet endroit,moins propre Ă le former, quene le doit ĂȘtre la gĂ©omĂ©trie qui lui fait
contracter lâhabitudedenâacquiescerquâĂ lâĂ©vidence;nous rĂ©pliqueronsquâĂ la rigueuronpourrait conclurede
cettediffĂ©rencemĂȘme,que la critiquedonne, aucontraire, plusdâexercice Ă lâesprit que lagĂ©omĂ©trie: parceque
lâĂ©vidence, qui estune et absolue, leïŹxeaupremier aspect sans lui laisserni la libertĂ©dedouter,ni lemĂ©ritede
choisir; au lieuque lesprobabilités étant susceptibles duplus et dumoins, il faut, pour semettre en état de
prendreunparti, les comparer ensemble, lesdiscuter et lespeser.UngenredâĂ©tudequi rompt,pourainsidire,
102
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik