Seite - 103 - in Differential Geometrical Theory of Statistics
Bild der Seite - 103 -
Text der Seite - 103 -
Entropy2016,18, 386
lâesprit Ă cette opĂ©ration, est certainementdâunusageplus Ă©tenduquecelui oĂč tout est soumisĂ lâĂ©vidence;
parceque les occasionsde sedéterminer surdesvraisemblancesouprobabilités, sontplus fréquentesquecelles
qui exigentquâonprocĂšdepardĂ©monstrations: pourquoinedirionsânouspasque souvent elles tiennentaussi
Ă desobjetsbeaucoupplus importants?
âJosephdeMaistreinLâEspitdeFinesse[221]
Le cadavre qui sâacoutre se mĂ©connait et imaginant lâĂ©ternitĂ© sâen approrie lâillusion . . . Câest pourquoi
jâabandonnerai ces frusques et jetant lemasquedemes jours, je fuirai le tempsoĂč,deconcert avec lesautres,
jemâĂ©reinte Ă me trahir.
âEmileCioraninPrĂ©cisdedecomposition[222]
ConïŹictsof Interest:TheauthordeclaresnoconïŹictof interest.
AppendixA. Clairaut(-Legendre)EquationofMauriceFrĂ©chetAssociatedtoâDistinguished
FunctionsâasFundamentalEquationofInformationGeometry
BeforeRao [223,224], in 1943,Maurice Fréchet [141]wrote a seminal paper introducingwhat
was thencalled theCramer-Raobound. Thispapercontains in factmuchmore that this important
discovery. Inparticular,MauriceFrĂ©chet introducesmoregeneralnotionsrelative toâdistinguished
functionsâ,densitieswithestimator reachingthebound,deïŹnedwitha function, solutionofClairautâs
equation. Thesolutionsâenvelopeof theClairautâsequationâareequivalent tostandardLegendre
transformwithout convexity constraintsbutonly smoothnessassumption. ThisFrĂ©chetâs analysis
canberevisitedonthebasisof Jean-LouisKoszulâsworksasaseminal foundationofâinformation
geometryâ.
WewilluseMauriceFréchetnotations, toconsider theestimator:
T=H(X1,...,Xn) (A1)
andtherandomvariable
A(X)= âlogpΞ(X)
âΞ (A2)
thatareassociatedto:
U=â
i A(Xi) (A3)
Thenormalizingconstraint +â
ââ pΞ(x)dx=1 implies that: +â
ââ ... +â
ââ â
i pΞ(xi)dxi=1
Ifweconsider thederivative if this lastexpressionwithrespect toΞ, then
+â
ââ ... +â
ââ [
â
i A(xi) ]
â
i pΞ(xi)dxi=0gives :EΞ [U]=0 (A4)
Similarly, ifweassumethatEΞ [T]= Ξ, then +â
ââ ... +â
ââ H(x1,...,xn)â
i pΞ(xi)dxi= Ξ, andweobtain
byderivationwithrespect toΞ:
E [(TâΞ)U]=1 (A5)
ButasE [T]= ΞandE [U]=0,we immediatelydeduce that:
E [(TâE [T])(UâE [U])]=1 (A6)
FromSchwarz inequality,wecandevelopthe followingrelations:
[E(ZT)]2â€E[Z2]E[T2]
1â€E [
(TâE [T])2 ]
E [
(UâE [U])2 ]
=(ÏTÏU) 2 (A7)
103
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik