Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 103 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 103 - in Differential Geometrical Theory of Statistics

Bild der Seite - 103 -

Bild der Seite - 103 - in Differential Geometrical Theory of Statistics

Text der Seite - 103 -

Entropy2016,18, 386 l’esprit Ă  cette opĂ©ration, est certainementd’unusageplus Ă©tenduquecelui oĂč tout est soumisĂ  l’évidence; parceque les occasionsde sedĂ©terminer surdesvraisemblancesouprobabilitĂ©s, sontplus frĂ©quentesquecelles qui exigentqu’onprocĂšdepardĂ©monstrations: pourquoinedirions–nouspasque souvent elles tiennentaussi Ă desobjetsbeaucoupplus importants? —JosephdeMaistreinL’EspitdeFinesse[221] Le cadavre qui s’acoutre se mĂ©connait et imaginant l’éternitĂ© s’en approrie l’illusion . . . C’est pourquoi j’abandonnerai ces frusques et jetant lemasquedemes jours, je fuirai le tempsoĂč,deconcert avec lesautres, jem’éreinte Ă me trahir. —EmileCioraninPrĂ©cisdedecomposition[222] ConïŹ‚ictsof Interest:TheauthordeclaresnoconïŹ‚ictof interest. AppendixA. Clairaut(-Legendre)EquationofMauriceFrĂ©chetAssociatedto“Distinguished Functions”asFundamentalEquationofInformationGeometry BeforeRao [223,224], in 1943,Maurice FrĂ©chet [141]wrote a seminal paper introducingwhat was thencalled theCramer-Raobound. Thispapercontains in factmuchmore that this important discovery. Inparticular,MauriceFrĂ©chet introducesmoregeneralnotionsrelative to“distinguished functions”,densitieswithestimator reachingthebound,deïŹnedwitha function, solutionofClairaut’s equation. Thesolutions“envelopeof theClairaut’sequation”areequivalent tostandardLegendre transformwithout convexity constraintsbutonly smoothnessassumption. ThisFrĂ©chet’s analysis canberevisitedonthebasisof Jean-LouisKoszul’sworksasaseminal foundationof“information geometry”. WewilluseMauriceFrĂ©chetnotations, toconsider theestimator: T=H(X1,...,Xn) (A1) andtherandomvariable A(X)= ∂logpΞ(X) ∂ξ (A2) thatareassociatedto: U=∑ i A(Xi) (A3) Thenormalizingconstraint +∞ −∞ pΞ(x)dx=1 implies that: +∞ −∞ ... +∞ −∞ ∏ i pΞ(xi)dxi=1 Ifweconsider thederivative if this lastexpressionwithrespect toΞ, then +∞ −∞ ... +∞ −∞ [ ∑ i A(xi) ] ∏ i pΞ(xi)dxi=0gives :EΞ [U]=0 (A4) Similarly, ifweassumethatEΞ [T]= Ξ, then +∞ −∞ ... +∞ −∞ H(x1,...,xn)∏ i pΞ(xi)dxi= Ξ, andweobtain byderivationwithrespect toΞ: E [(T−ξ)U]=1 (A5) ButasE [T]= ΞandE [U]=0,we immediatelydeduce that: E [(T−E [T])(U−E [U])]=1 (A6) FromSchwarz inequality,wecandevelopthe followingrelations: [E(ZT)]2≀E[Z2]E[T2] 1≀E [ (T−E [T])2 ] E [ (U−E [U])2 ] =(σTσU) 2 (A7) 103
zurĂŒck zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics