Seite - 104 - in Differential Geometrical Theory of Statistics
Bild der Seite - 104 -
Text der Seite - 104 -
Entropy2016,18, 386
Ubeingthesummationof independentvariables,Bienayméequalitycouldbeapplied:
(σU) 2=∑
i [
σA(Xi) ]2
=n(σA) 2 (A8)
Fromwhich,Fréchetdeducedthebound, rediscoveredbyCramerandRao2years later:
(σT) 2≥ 1
n(σA) 2 (A9)
Fréchet [141]observedthat it isaremarkable inequalitywherethesecondmember is independent
of thechoiceof the functionHdefiningthe“empiricalvalue”T,where thefirstmembercanbe taken
toanyempiricalvalueT=H(X1,...,Xn) subject to theuniqueconditionEθ [T]= θ regardless isθ.
Theclassicconditionthat theSchwarzinequalitybecomesanequalityhelpsustodeterminewhen
σT reaches its lowerbound 1√nσn .
Thepreviousinequalitybecomesanequalityiftherearetwonumbersαandβ (notrandomandnot
bothzero )suchthatα(H′−θ)+βU=0,withH′beingaparticular functionamongeligibleH such
thatwehaveanequality. Thisequality is rewrittenH′= θ+λ′Uwithλ′beinganon-randomnumber.
Ifweuse thepreviousequation, then:
E [(T−E [T])(U−E [U])]=1⇒E[(H′−θ)U]=λ′Eθ[U2]=1 (A10)
Weobtain:
U=∑
i A(Xi)⇒λ′nEθ [
A2 ]
=1 (A11)
Fromwhichweobtainλ′ andthe formof theassociatedestimatorH′:
λ′= 1
nE [A2] ⇒H′= θ+ 1
nE [A2]∑i ∂logpθ(Xi)
∂θ (A12)
It is thereforededucedthat theestimator that reaches the terminal isof the form:
H′= θ+ ∑
i ∂logpθ(Xi)
∂θ
n +∞
−∞ [
∂pθ(x)
∂θ ]2 dx
pθ(x) (A13)
withE [H′]= θ+λ′E [U]= θ.
H′wouldbeoneof theeligible functions, ifH′wouldbe independentofθ. Indeed, ifweconsider
Eθ0 [H ′]= θ0,E [
(H′−θ0)2 ]
≤Eθ0 [
(H−θ0)2 ]
∀H suchthatEθ0 [H]= θ0.
H= θ0 satisfies theequationandinequalityshowsthat it isalmostcertainlyequal toθ0.
So to lookforθ0,weshouldknowbeforehandθ0.
Atthisstage,Fréchet[141]lookedfor“distinguishedfunctions”(“densitésdistinguées”inFrench),
asanyprobabilitydensity pθ(x) suchthat the function:
h(x)= θ+ ∂logpθ(x)
∂θ
+∞
−∞ [
∂pθ(x)
∂θ ]2 dx
pθ(x) (A14)
is independent of θ. The objective of Fréchet is then to determine theminimizing function T =
H′(X1,...,Xn) that reaches thebound.Wecandeduce frompreviousrelations that:
λ(θ) ∂logpθ(x)
∂θ = h(x)−θ (A15)
104
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik