Seite - 108 - in Differential Geometrical Theory of Statistics
Bild der Seite - 108 -
Text der Seite - 108 -
Entropy2016,18, 386
Thisequation is the fundamentalequationof informationgeometry.
The“Legendre” transformwas introducedbyAdrien-MarieLegendre in1787 [225] to solvea
minimalsurfaceproblemGaspardMonge in1784.Usingaresultof JeanBaptisteMeusnier, astudent
ofMonge, it solves theproblembyachangeofvariablecorrespondingto the transformwhichnow
entitledwithhisname. Legendrewrote: “I have just arrived by a change of variables that canbeuseful
in other occasions.”About this transformation, Darboux [226] in his book gives an interpretation
ofChasles: “This comes after a comment byMr. Chasles, to substitute its polar reciprocal on the surface
compared toaparaboloïd.”TheequationofClairautwas introduced40yearsearlier in1734byAlexis
Clairaut [225]. Solutions“envelopeof theClairautequation”areequivalent to theLegendre transform
withunconditional convexity,butonlyunderdifferentiabilityconstraint. Indeed, foranon-convex
function,Legendre transformation isnotdefinedwhere theHessianof the function iscanceled, so that
the equationofClairaut onlymakes thehypothesis of differentiability. Theportionof the strictly
convexfunctiong inClairautequationy=px−g(p) to the function f givingtheenvelopesolutions
by the formulay= f(x) is precisely theLegendre transformation. TheapproachofFréchetmaybe
reconsidered inamoregeneral contextonthebasisof theworkof Jean-LouisKoszul.
AppendixB. BalianGaugeModelofThermodynamicsanditsCompliancewithSouriauModel
SupportedbyIndustialgroupTOTAL(previouslyElf-Aquitaine),RogerBalianhas introduceda
Gauge theoryof thermodynamics [103]andhasalsodeveloped informationgeometry instatistical
physicsandquantumphysics [103,227–235]. Balianhasobservedthat theentropyS (weuseBalian
notation, contrary with previous section where we use−S as neg-entropy) can be regarded as
an extensive variable q0 = S ( q1,...,qn )
, with qi(i = 1,...,n), n independent quantities, usually
extensive and conservative, characterizing the system. The n intensive variables γi are defined
as thepartialderivatives:
γi= ∂S(q1,...,qn)
∂qi (B1)
Balianhas introducedanon-vanishinggaugevariable p0,without physical relevance,which
multipliesall the intensivevariables,defininganewsetofvariables:
pi=−p0.γi , i=1,...,n (B2)
The2n+1-dimensional space is therebyextended into a 2n+2-dimensional thermodynamic
spaceT spannedbythevariables pi ,qiwith i=0,1,...,n,where thephysical systemisassociatedwith
an+1-dimensionalmanifoldM inT,parameterizedfor instancebythecoordinatesq1,...,qn and p0.
Agauge transformationwhichchanges theextravariable p0whilekeeping the ratios pi/p0=−γi
invariant isnotobservable, so thatastateof thesystemisrepresentedbyanypointofaone-dimensional
ray lying in M, alongwhich thephysical variables q0,...,qn,γ1,...,γn are fixed. Then, the relation
betweencontactandcanonical transformationsisadirectoutcomeofthisgaugeinvariance: thecontact
structure ω˜ = dq0− n∑
i=1 γi ·dqi inn+1dimensioncanbeembedded intoa symplectic structure in
2n+2dimension,with1-form:
ω= n
∑
i=0 pi ·dqi (B3)
as symplectization,withgeometric interpretation in the theoryoffiberbundles.
Then+1-dimensional thermodynamicmanifoldsMarecharacterizedbythevanishingof this
formω=0. The1-forminduces thena symplectic structureonT:
dω= n
∑
i=0 dpi∧dqi (B4)
108
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik