Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Seite - 123 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 123 - in Differential Geometrical Theory of Statistics

Bild der Seite - 123 -

Bild der Seite - 123 - in Differential Geometrical Theory of Statistics

Text der Seite - 123 -

Entropy2016,18, 254 For instance, ifG is thegroupofEuclideantransformations,werecover theclassicalEuclidean tensors. Hence, each G-tensor can be identified with an orbit of G within the space of the tensorcomponents. 3.MomentumasAffineTensor LetM be a differential manifold of dimension n and G a Lie subgroup ofAf f(n). In the applications tophysics,Mwillbe forus typically thespace-timeandGasubgroupofAf f(n)witha physicalmeaning intheframeworkofclassicalmechanics (Galileo’sgroup)orrelativity (Poincaré’s group). Thepointsof thespace-timeMareeventsofwhichthecoordinateX0 is thetime tandXi= xi for i runningfrom1to3gives theposition. The tangent space toM at thepointX equippedwitha structureof affine space is called the affine tangent spaceand isdenotedATXM. Its elementsare called tangentpoints atX. The setof affineformsontheaffinetangentspace isdenotedA∗TXM.Wecallmomentumabilinearmapμ: μ :TXM×A∗TXM→R : (−→V ,Ψ) →μ(−→V ,Ψ) It isamixed1-covariantand1-contravariantaffine tensor. Taking intoaccount thebilinearity, it is represented inanaffineframe f by: μ( −→ V ,Ψ)=(χKβ+ΦαLαβ)V β whereKβ andLαβ are thecomponentsofμ in theaffineframe f or,equivalently, thecoupleμ=(K,L) of therowK collecting theKβ andthen×nmatrixLofelementsLαβ. Owingto (2), the transformation lawisgivenbythe inducedactionofAf f(n): K′=KP−1, L′=(PL+CK)P−1 (3) If theaction is restrictedto thesubgroupG, themomentumμ isaG-tensor. Ontheotherhand,havea lookto theLiealgebragofG, that is thesetof infinitesimalgenerators Z= da=(dC,dP)with a∈G. Letus identify thespaceof themomentumcomponentsμ=(K,L) to thedualg∗of theLiealgebra thanks to thedualpairing: μZ=μda=(K,L)(dC,dP)=KdC+Tr(LdP) (4) Weknowthat thegroupactson itsLiealgebrabytheadjoint representation: Ad(a) :g→g :Z′ →Z=Ad(a)Z′= aZ′a−1 . AsG isagroupofaffinetransformations,any infinitesimalgeneratorZ is representedby: Z˜= dP˜= d ( 1 0 C P ) = ( 0 0 dC dP ) . Then Z˜= P˜ Z˜′ P˜−1 leads to: dC=P(dC′−dP′P−1C), dP=PdP′P−1 . (5) Thisadjoint representation induces thecoadjoint representationofG ing∗definedby: (Ad∗(a)μ′)Z=μ′(Ad(a−1)Z) . 123
zurück zum  Buch Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Titel
Differential Geometrical Theory of Statistics
Autoren
Frédéric Barbaresco
Frank Nielsen
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Abmessungen
17.0 x 24.4 cm
Seiten
476
Schlagwörter
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Kategorien
Naturwissenschaften Physik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics