Seite - 135 - in Differential Geometrical Theory of Statistics
Bild der Seite - 135 -
Text der Seite - 135 -
Entropy2016,18, 254
14. DeSaxcé,G.;Vallée,C.BargmannGroup,MomentumTensorandGalilean invarianceofClausius–Duhem
Inequality. Int. J.Eng. Sci. 2012,50, 216-232.
15. Bargmann,V.Onunitary representationof continuousgroups. Ann. Math. 1954, 59, 1–46, doi:10.2307/
1969831.
16. Hall,M.TheTheoryofGroups;MacmillanCo.:NewYork,NY,USA,1953.
17. Barbaresco,F.Koszul InformationGeometryandSouriauGeometricTemperature/CapacityofLieGroup
Thermodynamics.Entropy2014,16, 4521–4565.
18. Koszul, J.L.Ouvertsconvexeshomogènesdesespacesaffines.MathematischeZeitschrift1962,79, 254–259.
(InFrench)
19. Vinberg,È.B.Structureof thegroupofautomorphismsofahomogeneousconvexcone.TrudyMoskovskogo
MatematicheskogoObshchestva1965,13, 56–83. (InRussian)
20. Künzle,H.P.GalileiandLorentzstructuresonspace-time:Comparisonof thecorrespondinggeometryand
physics.Annalesde l’IHPPhysiqueThéorique1972,17, 337–362.
21. Crooks,G.E.Measuringthermodynamic length.Phys. Rev. Lett. 2009,99, 100602.
c©2016bytheauthor. LicenseeMDPI,Basel,Switzerland.Thisarticle isanopenaccess
articledistributedunder the termsandconditionsof theCreativeCommonsAttribution
(CCBY) license (http://creativecommons.org/licenses/by/4.0/).
135
Differential Geometrical Theory of Statistics
- Titel
- Differential Geometrical Theory of Statistics
- Autoren
- Frédéric Barbaresco
- Frank Nielsen
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 476
- Schlagwörter
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Kategorien
- Naturwissenschaften Physik